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a b s t r a c t

The aim of this paper is to review existing approaches to the automatic detection and segmentation of
masses in mammographic images, highlighting the key-points and main differences between the used
strategies. The key objective is to point out the advantages and disadvantages of the various approaches.
In contrast with other reviews which only describe and compare different approaches qualitatively, this
review also provides a quantitative comparison. The performance of seven mass detection methods is
compared using two different mammographic databases: a public digitised database and a local full-field
digital database. The results are given in terms of Receiver Operating Characteristic (ROC) and Free-
response Receiver Operating Characteristic (FROC) analysis.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Breast cancer is considered a major health problem in western
countries, and constitutes the most common cancer among women
in the European Union (Eurostat, 2002). A recent study developed
by the American Cancer Society estimates that, in the United
States, between one in eight and one in 12 women will develop
breast cancer during their lifetime (American Cancer Society,
2007). Breast cancer remains, in the United States as well in the
European Union, the leading cause of death for women after their
40 s (Eurostat, 2002; Buseman et al., 2003). However, although
breast cancer incidence has increased over the past decade, breast
cancer mortality has declined among women of all ages (Sickles,
1997). This favourable trend in mortality reduction may relate to
the widespread adoption of mammography screening (Sickles,
1997; De Koning et al., 1995), and improvements made in breast
cancer treatment (Buseman et al., 2003).

Mammography remains the key screening tool for the detection
of breast abnormalities. Vacek et al. (2002) show that the propor-
tion of breast tumours that were detected in Vermont by mammo-
graphic screening increased from 2% during 1974–1984 to 36%
during 1995–1999. However, it is also well known that expert radi-
ologists can miss a significant proportion of abnormalities (Bird
et al., 1992; Birdwell et al., 2001). In addition, a large number of
ll rights reserved.
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mammographic abnormalities turn out to be benign after biopsy
(Basset and Gold, 1987; Hall et al., 1988).

There are a large number of different types of mammographic
abnormality (Kopans, 1998). In the majority of cases, however,
the abnormalities are either micro-calcifications or masses. Mi-
cro-calcifications usually form clusters and individual micro-calci-
fications can range from 20 to several hundred microns in
diameter. On the other hand, a breast mass is a generic term to
indicate a localised swelling, protuberance, or lump in the breast.
Masses can be caused by different processes: from natural changes
in the breast to cancerous processes. Masses are characterised by
their location, size, shape, margin, and associated findings (i.e.
architectural distortion, contrast). Fig. 1 shows different masses
according to their shape and margin (the border of the mass).
These associated properties are examined by radiologists as they
are strongly correlated with the classification (benign versus
malignant) of the mass (Heywang-Köbrunner et al., 2001). It is
generally accepted that mass detection is a more challenging prob-
lem than the detection of micro-calcifications, not only for the
large variation in size and shape in which masses can appear in a
mammogram but also because masses often exhibit poor image
contrast (Basset and Gold, 1987; Vyborny and Giger, 1994).

The idea of developing computer systems to assist radiologists
in the detection and classification of breast cancer is not recent
(Winsberg et al., 1967). However, the recent development of full-
field digital mammographic imaging systems has been a catalyst
in the increase of such computer systems (Kuzmiak et al., 2002).
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Fig. 1. Three mass examples with different shape and margin: (a) circular shape
and circumscribed margin, (b) lobular shape and well defined margin, and (c)
spiculated shape and ill-defined margin. The last of the three has a higher
malignancy probability.
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A Computer-Aided Diagnosis (CAD) system is a set of automatic or
semi-automatic tools developed to assist radiologists in the detec-
tion and/or classification of mammographic abnormalities (Bir-
dwell et al., 2001; Freer and Ulissey, 2001).

In 2001 Freer and Ulissey (2001), using a database containing
12,860 patients, concluded that the use of CAD in the interpreta-
tion of screening mammograms can increase the detection of
early-stage malignancies. However, results published in 2005
using a database of 6111 women indicated that in an established
screening environment CAD, in its present form, is not effective
in that there was no significant difference observed in cancer
detection rates with CAD compared to reading mammograms
without CAD (Khoo et al., 2005). These are only two examples of
a still open debate in the medical imaging field (Gur et al., 2004;
Nishikawa and Kallergi, 2006; Fenton et al., 2007). It has been
agreed that CAD systems are useful for detecting cancers that are
clinically missed. However, the main drawback of such systems
is both the significant number of false positive detections (Nishik-
awa and Kallergi, 2006) and true masses detected only in one view
(Khoo et al., 2005; Zheng et al., 2006), which currently reduces
their clinical use. For the low number of malignancies within the
screening population, which is around 6 out of 1000 screened
cases, this is a major issue (Taylor et al., 2005; Astley et al., 1998).

The first part of the review is focused on published techniques
related to the detection and segmentation of mammographic
masses of any shape, margin and size. Note that we distinguish be-
tween detection and segmentation algorithms. Detection is defined
as the identification of potential lesions within all the parenchymal
background. Usually, these methods generate a marker/prompt at
a suspicious region in a mammogram. In contrast, segmentation
is defined as a method able to detect the precise outline of the po-
tential lesion. It should be noted that using these definitions, there
are algorithms that, at the same time, detect and segment masses.
Looking at the literature, there are three possible outputs for mass
detection/segmentation algorithms: the detection (and/or segmen-
tation) of potential lesions, the classification of the detected lesion
as mass or not mass (usually referred as false positive reduction
algorithms), or the diagnosis of a lesion (classification as a benign
or malignant mass). Here we concentrate on the detection (and
segmentation) stage, which is considered the first and key stage
in the complete process. The remaining two stages usually com-
prise a two class discrimination process (either false positive ver-
sus true positive or benign versus malignant).

The second part of the paper is a quantitative review of relevant
approaches to mass detection. We re-implemented seven different
algorithms, and we evaluated them using two different databases.
The aim is not just to compare the performance of the algorithms
but mainly to obtain conclusions from the strategies used. In detail,
we want to answer the following two questions: does the density
of the breast affect the detection of lesions? and do the size and the
shape of a lesion modify the performance of the algorithms? Both
questions as well as related ones are addressed in the second part
of the paper.

This is not the first attempt to review mammographic detection
or segmentation. For instance, in 1994, Vyborny and Giger (1994)
reviewed different strategies. Recently, Cheng et al. (2003, 2006),
Rangayyan et al. (2007), and Elter and Horsch (2009) published
surveys in mammographic computer-aided diagnosis. Cheng
et al. (2003) covers the detection and classification of micro-calci-
fications. Cheng et al. (2006) cover the general enhancement of
mammographic images, the detection and classification of masses,
and underlying computer vision techniques, with an approximate
even split in references between these four areas. They provide a
review covering a similar research area, but do not provide a dis-
tinct classification between the various approaches and concen-
trate on the specific technical approaches to group publications
together: the different approach to the review makes this comple-
mentary to the current review. Rangayyan et al. (2007) provided a
review covering the full range of mammographic abnormalities
using an approach similar to Cheng et al. (2006). The coverage of
the detection and classification of masses is limited to a description
of some methods and how these are evaluated. Both Cheng et al.
(2006) and Rangayyan et al. (2007) qualitatively deal with
enhancement, detection, characterisation, and classification of
masses. Finally, Elter and Horsch (2009) focused their review on
approaches for mass and micro-calcification diagnosis, covering
the segmentation of region of interests for extracting shape and
contour features, and their posterior classification. In contrast with
these reviews, our review is focused only on mass detection and
segmentation (all relevant references from Cheng et al. (2006),
Rangayyan et al. (2007), and Elter and Horsch (2009) are covered
here), highlighting the different strategies used for detecting suspi-
cious regions and grouping publications together according to the
used computer vision based methodologies (Fu and Mui, 1981). In
addition, a quantitative comparison of seven selected algorithms is
given in terms of Free-response Receiver Operating Characteristic
(FROC) and Receiver Operating Characteristic (ROC) analysis. In
this context, the works by Singh and Al-Mansoori (2000) and te
Brake and Karssemeijer (2001) should also be mentioned, as they
compared two strategies: region growing and contour-based
detection (the former using contour filters over an enhanced image
and the latter dynamic programming). Timp and Karssemeijer
(2004) added to this last comparison an active contour algorithm.

The remainder of this paper is structured in five sections. In Sec-
tions 2 and 3 a review of mass detection and segmentation tech-
niques is presented. Approaches are discussed and classified
according to computer vision strategies using the work of Fu and
Mui (1981) as a basis. Section 2 reviews approaches that use only
a single mammographic view to detect masses, whilst Section 3 ex-
plains the different strategies using multiple mammographic views
in the detection process. In Section 4, the performance of a subset
of representative techniques is evaluated in detail using two differ-
ent mammographic databases. Discussions are given in Section 5,
and in Section 6 the conclusions of this review and suggestions
for future research directions are presented.
2. Mass detection using a single view

Detection using a single mammographic image relies on the fact
that pixels inside a mass have different characteristics from the
other pixels within the breast area. The characteristics used can
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be simply related to grey-level intensity values or to (local) texture
or morphological measures. In addition, some approaches take the
distribution of spicules associated with masses into account. Both
aspects can be treated independently or sequentially. The columns
of Tables 1–4 classify existing methods according to the character-
istics used for the detection/segmentation. Note that the features
used in the optional subsequent classification processes (benign/
malignant discrimination or false positive reduction) are not taken
into account here. In the lasts columns of each table we indicate
the aim of each work (which can be the detection of masses in full
mammograms, the segmentation of a mass given a small patch of
the mammogram or a given seed point, or the detection and seg-
mentation of the mass given the full image) and the size of the
database used for validating the approach (in parenthesis the num-
ber of images used for training the parameters). Note that depend-
ing of the aim of the approach the used images can be regions of
interests (ROIs), single mammograms, pairs of mammograms or
full four-mammogram cases.

In generic computer vision terminology, segmentation tech-
niques can be divided into unsupervised and supervised ap-
proaches. Supervised segmentation, or

� Model-based methods, rely on the prior knowledge about the
object and background regions to be segmented. The prior infor-
mation is used to determine if specific regions are present
within an image or not.

Alternatively, unsupervised segmentation partitions an image
into a set of regions which are distinct and uniform with respect to
specific properties, such as grey-level, texture or colour. Classical
approaches to solving unsupervised segmentation are divided in
three major groups (Fu and Mui, 1981):

� Region-based methods, which divide the image into homoge-
neous and spatially connected regions.

� Contour-based methods, which rely on the boundaries of
regions.

� Clustering methods, which group together those pixels having
the same properties and might result in non-connected regions.
Table 1
Region-based mammographic detection and/or segmentation techniques indicating the use
for validating the approach (r stands for ROI, m for mammogram, p for pair (2 mammogr
images used for training the approaches. The last column indicates the purpose of the descr
mass given a small patch of the mammogram or a given seed point (S), or the detection a

Author Year Texture

Bårman and Granlund (1994) 1994
Woods and Bowyer (1994) 1994
Huo et al. (1995) 1995
Zheng et al. (1995b, 2003b) 1995
Pohlman et al. (1996) 1996
Rangayyan et al. (1997) 1997
Guliato et al. (1998, 2003) 1998
Kupinski and Giger (1998) 1998
Qi and Snyder (1998) 1998
Petrick et al. (1999, 2002) 1999
Lee et al. (2001) 2001
Chu et al. (2002) 2002
Kinnard et al. (2002, 2004b,a) 2002
Toledo Santos et al. (2002) 2002
Martı́ et al. (2003) 2003

p

Zhang et al. (2004) and Zhang and Foo (2006) 2004
Gulsrud et al. (2005) 2005
Hejazi and Ho (2005) 2005
Herredsvela et al. (2005) 2005
Sheshadri and Kandaswamy (2005) 2005
Wei et al. (2005, 2006) 2005
Eltonsy et al. (2007) 2007
With regard to mass detection, we should clarify that unsuper-
vised approaches tend to be combined with a posterior false posi-
tive reduction step in order to increase their performance. This
false positive reduction step usually consists of a feature extraction
algorithm combined with a classifier. In contrast, the supervised
approaches usually combine both steps into a single one.

In subsequent subsections, a more detailed description of mass
detection and segmentation methods in each category (region-
based, contour-based, clustering and model-based methods) is
given.

2.1. Region-based methods

Region-based segmentation relies on the principle of homoge-
neity, which means that there has to be at least one feature that re-
mains uniform (±an error measure) for all pixels within a region.
Table 1 shows the mass detection and/or segmentation approaches
which are based on such a principle. The last column of the table
indicates the aim of the described approaches. The algorithms la-
belled as segmentation usually start from a set of seed points man-
ually located, or they are applied over regions of interests, which
are small patches of a mammogram containing a suspicious region.

Region-based methods can be split in two basic strategies: the
well known region growing and split and merge approaches. Wa-
tershed based methods are related to the former and also discussed
here.

2.1.1. Region growing and related methods
More than 30 years have passed since Zucker reviewed region

growing algorithms (Zucker, 1976). Region growing is based on
the propagation of an initial seed point according to a specific
homogeneity criterion, iteratively increasing the size of the region.
Since those early days, region growing has seen a number of
improvements, mainly due to the integration of boundary informa-
tion in the algorithm. As Freixenet et al. (2002) reviewed, this
information can be introduced before the growing step, using for
example a controlled seed placement (Benois and Barba, 1992) or
during growing, like in active region algorithms (Zhu and Yuille,
1996).
d feature information. The penultimate column indicates the number of images used
ams), and c for case (4 mammograms)) and the parenthesis stand for the number of
ibed approaches: detection of masses in full mammograms (D), the segmentation of a
nd segmentation of the mass given the full image (D and S).

Gradient Grey-level Shape Num testing D/S
p p

Sp
330 m D and Sp p
95 r Sp p
510(90) m D and Sp
96 r Sp
54 r Sp
18 r Sp p
118 r Sp
11 r Sp p
560(253) m Sp
204 m D and Sp
20 r Sp p
124 m Sp
109 r Sp p
20 r Sp
40 m D and Sp p
16 r Sp
60(80) m D and Sp p
18 m Dp p

Sp p p
488(44) m D and Sp
270(135) c D and S
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Region growing algorithms have been widely used in mammo-
graphic mass segmentation with the aim to extract the potential
lesion from its background. Since the early nineties, researchers
from the University of Chicago investigated the introduction of
shape information into the homogeneity criterion. With the aim
to integrate the radiologists experiences, Huo et al. (1995) devel-
oped a semi-automatic region growing approach, in which the
growing step was automatically computed after a radiologist had
manually placed the seed point. Later, Kupinski and Giger (1998)
compared this initial approach to two improved versions. The first
one incorporated the Radial Gradient Index, which is a measure of
the average proportion of gradient which are radially directed out-
wards (for a circular region the Radial Gradient Index is equal to
one). The second one was based on a probabilistic method in which
the probability of belonging to a region was modelled by a non-
Gaussian distribution (using a kernel distribution), while the back-
ground was modelled using a uniform probability. They showed
that the latter version improved performance compared to the
other two approaches. Kinnard et al. (2002, 2004b,a) proposed a
similar approach, where the cost function depended on the con-
tours of the image. Subsequently, the boundary of the mass was lo-
cated by using those points where a significant change in the cost
function was found. In a similar probabilistic context, Martí et al.
(2003) used active regions to model the mass in ROIs images. They
modelled the mass as a Gaussian function, using features related to
contour, texture, and shape information, and associated the back-
ground with a uniform probability.

Guliato et al. (1998) implemented a fuzzy version of the region
growing algorithm. In contrast to the above approaches, no prior
shape information was considered. Guliato et al.’s method was
based on considering the uncertainty present around the bound-
aries of a tumour region, with the aim to preserve the transition
between mass and normal tissue. An alternative approach was pro-
posed by Bårman and Granlund (1994) who included edge infor-
mation in the region growing algorithm in a multi-resolution
framework. Petrick et al. (1999, 2002) also introduced gradient
information into the region growing algorithm, but with the objec-
tive to reduce merging between adjacent and overlapping struc-
tures. Initially, the algorithm selected seeds using local maxima
in the grey-scale image. In a subsequent step, a gradient image
was constructed by using frequency-weighted Gaussian filtering.
With this image, the thresholds of the regions bounded by the
edges are extracted. Similar to the Chicago approach, Petrick
et al. aggregate groups of pixels with similar characteristics (using
thresholds), but, in contrast, they do not use shape information in
the homogeneity criterion. However, this information was recently
incorporated by Wei et al. (2005, 2006) who instead of using the
frequency-weighted Gaussian filtering used an adaptive ring filter.
Instead of segmenting the mass, Pohlman et al. (1996) segment the
background region near the lesion and the boundary of the lesion is
assigned to the inner boundary of this surrounding region.

Other researchers concentrated their efforts on improving the
region growing algorithm by identifying the optimal set of initial
seeds (mass detection). Zhang et al. (2004) and Zhang and Foo
(2006) divided the breast in small regions and the pixels with max-
imum grey value were taken as seed points. Qi and Snyder (1998)
used Bézier splines to interpolate histograms, from which they ex-
tracted threshold values at local maxima. Zheng et al. (1995b) used
as a starting point the information coming from an edge image.
This image was obtained by subtracting two Gaussian blurred
images with a large difference in kernel sizes. Subsequently, they
improved this work using a false positive reduction scheme (Zheng
et al., 1999a) and including shape condition factors to limit the
growing step (Zheng et al., 2003b). Another way to locate the initial
starting points of the algorithm is to find the local maxima in the
mammograms, which can be done using mathematical morpholog-
ical operations, as suggested by Hejazi and Ho (2005), or small
window thresholding, as proposed by Woods and Bowyer (1994).

A different approach was proposed by Chu et al. (2002), where
the region growing approach is represented as a growing tree
whose root is the selected seed. Active leaves are deleted in the
connection area between adjacent regions to avoid merging adja-
cent structures. The authors stated that this graph-based segmen-
tation more closely matches radiologists’ outlines of masses.

2.1.2. Watershed methods
The watershed transform is a mathematical morphological ap-

proach to image segmentation (Beucher and Lenteuejoul, 1979;
Vincent and Soille, 1991). Its name stems from the manner in
which the algorithm segments the image regions into catchment
basins (the low points in intensity). If water falls into these basins,
the level in each basin rises until it is shared with its neighbouring
basin. Thus, the output of this algorithm is a hierarchy of basins.
What remains is to select the most discriminative level of basins
for each purpose.

In mammographic mass detection and/or segmentation this
algorithm has been used by different researchers. All of them noted
that a pre-processing stage was necessary in order to reduce the
number of initial segmented basins. Hence, Toledo Santos et al.
(2002) used histogram enhancement, Herredsvela et al. (2005)
and Gulsrud et al. (2005) applied image blurring, and Sheshadri
and Kandaswamy (2005) suggested to extract the internal curvilin-
ear structures (blood vessels, veins, milk ducts, speculations and fi-
brous tissue) before applying the watershed transform.

2.1.3. Split and merge methods
The split and merge technique (Chen and Pavlidis, 1979) is the

other classical region-based segmentation method. As the name
indicates, the process consists of recursively splitting the image
until all regions satisfy a homogeneity criterion. In an accompany-
ing step, all adjacent regions satisfying a second homogeneity cri-
terion are merged. However, to our knowledge, for mammographic
mass segmentation, this approach has only been used by Rangay-
yan et al. (1997) who, beginning with a hand-selected region of
interest containing a single mass, used this technique to approxi-
mate its boundary using polygons.

2.2. Contour-based methods

Image segmentation techniques based on edge detection have
been in use since the early work of Roberts (1965). However, iden-
tifying regions on the basis of edge information is far from trivial,
since algorithms for edge detection do not usually possess the abil-
ity of the human vision system to complete interrupted edges
using experience and contextual information. Therefore, some-
times edges are detected which are not the transition from one re-
gion to another and correctly detected edges often present gaps at
places where the transitions between regions are not abrupt en-
ough. Hence, detected edges may not necessarily form a set of
closed connected curves that surround distinct regions.

As indicated in Table 2, there are only limited publications try-
ing to detect masses using edge-based methods, which is mainly
due to the difficulty of extracting the boundary between masses
and normal tissue. Typical algorithms for finding edges are based
on filtering the image in order to enhance relevant edges prior to
the detection stage. The earliest approaches for mass detection
are based on such methodology. The location of edges in Petrick
et al. (1995, 1996b,a) was based on a Gaussian–Laplacian edge
detector, after which the image was enhanced by an Adaptive Den-
sity-Weighted Contrast Enhancement Filter. Parr et al. (1994) used
Gabor filters to locate the spicules of stellated lesions. The Hough
transform (Davies, 1997) is a common approach in industrial



Table 2
Contour-based mammographic detection and/or segmentation techniques indicating used feature information and the purpose of each work. The penultimate column indicates
the number of images used for validating the approach (r stands for ROI, m for mammogram, p for pair (2 mammograms), and c for case (4 mammograms)) and the parenthesis
stand for the number of images used for training the approaches. The last column indicates the purpose of the described approaches: detection of masses in full mammograms
(D), the segmentation of a mass given a small patch of the mammogram or a given seed point (S), or the detection and segmentation of the mass given the full image (D and S).

Author Year Texture Gradient Grey-level Shape Num testing D/S

Parr et al. (1994) 1994
p p

50 r S
Petrick et al. (1995, 1996b,a) 1995

p p
84(84) m D and S

Groshong and Kegelmeyer (1996) 1996
p

44 m D
Kobatake and Yoshinaga (1996) 1996

p p
34(19) r S

Zhang et al. (1996) 1996
p p

42 m D
Kobatake et al. (1998, 1999) 1999

p p
1212 r S

te Brake et al. (1999) 1999
p p

132 m S
Sahiner et al. (2001b,a) 2001

p p
249 r S

Allen et al. (2002) 2002
p p

905 r S
Hong and Brady (2003) 2003

p
48 m D and S

Yin et al. (2003) 2003
p

20 m D and S
Fauci et al. (2004, 2005) and Cascio et al. (2006) 2004

p p
3762 m D and S

Nakagawa et al. (2004) 2004
p p

53 r S
Timp and Karssemeijer (2004) 2004

p p
3974 r S

Shi et al. (2008) 2008
p p

909 r S
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applications for object detection. For mammographic purposes, it
had been used by Groshong and Kegelmeyer (1996) to detect cir-
cumscribed lesions, and also by Zhang et al. (1996), which used
it to model tissue texture changes near spiculated lesions. A differ-
ent approach is described by Kobatake and Yoshinaga (1996),
which starting with a sub-image containing a possible mass lesion,
looked for spicules using gradient information in three steps:
firstly, the morphological line-skeletons were extracted in order
to detect long and thin anatomical structures (like spicules). Sec-
ondly, a modified Hough transform was used to extract lines pass-
ing near the centre of the mass, and finally the algorithm
automatically selected candidates based on the number of line-
skeletons that satisfy the second step.

There have been recent attempts to avoid the necessity of filter-
ing the image. In this sense, a topographic representation of the
mammogram was proposed by Hong and Brady (2003) in order
to detect salient regions. By thresholding at different topographic
levels they were able to find different types of regions, like the pec-
toral muscle, breast density, or masses. A similar approach was
used by Yin et al. (2003), who investigated the use of an intelligent
mesh for finding the masses. The mesh is represented by a set of
nodes and springs connecting them. The nodes are adapted to
the edges of the image, and suspicious regions are those with a
high density of nodes. Fauci et al. (2004, 2005) and Cascio et al.
(2006) looked for the contours of the mass using an iterative algo-
rithm. At each local maxima a threshold was selected which was
used to draw an iso-intensity contour. The threshold value was
based on user interaction and histogram information. Subse-
quently, the area of the selected region was refined by adjusting
the threshold.

In other approaches, edge information has been used to refine
initial segmentation results. Examples are Kobatake et al. (1999)
and Sahiner et al. (2001b,a), who used active contour models
(snakes) as a final step of their algorithms. Nakagawa et al.
(2004) used two images for calculating the forces of the snakes,
one related to edge intensity and the other based on grey-level
information. Allen et al. (2002) and more recently Yuan et al.
(2007) and Shi et al. (2008) used level sets for accurately finding
the border of the lesions. Timp and Karssemeijer (2004) found
the best contour of the mass by an optimisation technique based
on dynamic programming. Their approach used both edge-based
information as well as a priori knowledge about the grey-level dis-
tribution of the region of interest around the mass. They demon-
strated a better performance of their method in comparison with
an implemented version of the region growing algorithm inspired
on the explained work of Kupinski and Giger (1998), and the dis-
crete contour model inspired by the initial work of Lobregt and
Viergever (1995) and adapted for mammographic purposes by te
Brake et al. (1999).

There are other related approaches which are based on the
detection of spicules and the use of statistical analysis of gradi-
ent-orientation maps (Karssemeijer and te Brake, 1996; te Brake
and Karssemeijer, 1999; Zwiggelaar et al., 1999a). However, due
to the necessity to perform a posterior classification step we con-
sider these as model-based approaches.

2.3. Clustering methods

Clustering methods are one of the most commonly used tech-
niques for image segmentation, as discussed in the review by Jain
et al. (1999), and also for mass detection and/or segmentation, as
can be seen from the reviewed approaches shown in Table 3. Based
on the work of Jain et al., clustering techniques can be divided into
hierarchical and partitional algorithms, where the main difference
between them is that hierarchical methods produce a nested series
of partitions while partitional methods produce only a single parti-
tion. Although hierarchical methods can be more accurate, part-
itional methods are used in applications involving large datasets,
like the ones related to images, as the use of nested partitions is
computationally prohibitive. However, partitional algorithms have
two main disadvantages: (1) the algorithm has to know, a priori,
the number of regions that are in the image, and (2) clustering
algorithms do not use spatial information inherent to the image.

The traditional partitional clustering algorithm is the k-Means
algorithm (MacQueen, 1967), which is characterised by simple
implementation and low complexity. For mass segmentation, this
algorithm has been used by Sahiner et al. (1996, 1998) in order
to generate initial segmentation results. As we have described in
the previous section, Sahiner et al. improved this segmentation
using edge information. In contrast, Li et al. (1997, 1999, 2002)
used a generalisation of k-Means that included spatial information
(based on the work of Pappas (1992)) to refine an initial detection
(which is achieved by using adaptive thresholding in a wavelet
multi-resolution framework). Qian et al. (1998a,b, 1999, 2001)
investigated how the pre-processing steps affect the result of the
segmentation algorithm used by Li et al. and its posterior classifi-
cation performance.

The Fuzzy C-Means (FCM) algorithm (Bezdek, 1981) is an exten-
sion of the k-Means algorithm which allows each pattern of the im-
age to be associated with every cluster using a fuzzy membership



Table 3
Clustering based mammographic detection and/or segmentation techniques indicating used feature information and the purpose of each work. The penultimate column indicates
the number of images used for validating the approach (r stands for ROI, m for mammogram, p for pair (2 mammograms), and c for case (4 mammograms)) and the parenthesis
stand for the number of images used for training the approaches. The last column indicates the purpose of the described approaches: detection of masses in full mammograms
(D), the segmentation of a mass given a small patch of the mammogram or a given seed point (S), or the detection and segmentation of the mass given the full image (D and S).

Author Year Texture Gradient Grey-level Shape Num testing D/S

Brzakovic et al. (1990) 1990
p

25(10) m D and S
Kobatake et al. (1994) and Kobatake and Murakami (1996) 1994

p
15 m D

Gupta and Undrill (1995) and Undrill et al. (1996) 1995
p p p

31 r S
Li et al. (1995) 1995

p p
95(20) m D and S

Comer et al. (1996) 1996
p p

36 m D and S
Laine et al. (1996) 1996

p p
S

Miller and Ramsey (1996) 1996
p

67 c D and S
Sahiner et al. (1996, 1998) 1996

p
168 r S

Sameti and Ward (1996) and Sameti et al. (1997) 1996
p

35 m S
Chen and Lee (1997) 1997

p
41 m S

Li et al. (1997, 1999, 2002) 1997
p p

34(60) m D and S
Matsubara et al. (1997, 1998) 1997

p
231 m D and S

Polakowski et al. (1997) 1997
p p

254(18) m D and S
Goto et al. (1998) 1998

p p
18 r S

Qian et al. (1998a,b, 1999, 2001) 1998
p

100 r S
Giménez et al. (1999) 1999

p
D

Pfisterer and Aghdasi (1999, 2001) 1999
p p

56 m S
Rogova et al. (1999) 1999

p p
S

Zheng et al. (1999b) and Zheng and Chan (2001) 1999
p

322 m D
Heath and Bowyer (2000) 2000

p
160(156) m D

Rocha et al. (2000) 2000
p p

25 r S
Velthuizen (2000) 2000

p
199 r S

Mudigonda et al. (2001) 2001
p p

56 m D and S
Xie and Ma (2001) and Xie (2002) 2001

p p
S

Kasai et al. (2002) 2002
p p

626 m D
Khan et al. (2002) 2002

p p
30 m D

Kwok et al. (2002) 2002
p

28 m S
Ball et al. (2004) 2004

p
62 r S

Cao et al. (2004a,b) 2004
p

123 r S
Catarious et al. (2004) 2004

p
183 r S

Abdel-Dayem and El-Sakka (2005) 2005
p

48 m D and S
Özekes et al. (2005) 2005

p
52 r D and S

Bruynooghe (2006) 2006
p

95(5) m D and S
Kom et al. (2007) 2007

p
61 m D and S

Varela et al. (2007) 2007
p

66 (30) m D and S
Rojas and Nandi (2008) 2008

p
57 m D

Suliga et al. (2008) 2008
p

100 m D and S
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function. FCM was used with different objectives in the works of
Velthuizen (2000) and Chen and Lee (1997). Velthuizen used it to
group pixels with similar grey-level values in the original images,
while Chen and Lee used it over the set of local features extracted
from the application of a multi-resolution wavelet transform and
Markov Random Fields (MRF) analysis (Bishop, 2006). Moreover,
the output of the FCM was the input of an Expectation Maximisa-
tion (EM) algorithm (Dempster et al., 1977) based on Gibbs Ran-
dom Fields (Bishop, 2006). These final steps are closely related to
the algorithm proposed by Comer et al. (1996).

In contrast to FCM which improves k-Means using a fuzzy ap-
proach of the energy function, the Dogs and Rabbit (DaR) algorithm
(McKenzie and Alder, 1994) performs a more robust seed place-
ment. The DaR was used by Zheng et al. (1999b) and Zheng and
Chan (2001) to obtain an initial set of regions which subsequently
were used to initialise a MRF approach. As Li et al. stated (Li et al.,
1995), MRF allow the modelling of joint distributions in terms of
local spatial interactions, introducing thus, local region informa-
tion into the algorithm. This information was also introduced in
the work of Rogova et al. (1999) using a constrained stochastic
relaxation algorithm with a disparity measure function, which esti-
mated the similarity between two blocks of pixels in the feature
space. In contrast, Cao et al. (2004a,b) used two information theory
based clustering algorithms to segment masses. The first approach
was the Deterministic Annealing approach (Rose, 1998), which is a
global minimisation algorithm and incorporated ‘‘randomness”
into the to be minimised energy function. In the second approach,
they unified a fuzzy based clustering and Deterministic Annealing
to obtain an improved algorithm. In contrast with these ap-
proaches, Bruynooghe (2006) segmented an enhanced image in-
stead of the original mammogram. The enhanced image was
obtained by removing the locally linear fine detail structure using
a morphological algorithm based on successive geodesic openings
(Davies, 1997) with linear structuring elements at various
orientations.

One of the earliest approaches to mass detection was the work
of Brzakovic et al. (1990), which was based on a multi-resolution
fuzzy pyramid linking approach, a data structure in which the in-
put image formed the basis of the pyramid and each subsequent le-
vel (of lower resolution) was sequentially constructed. The links
between each node and its four parents were propagated using a
fuzzy function to upper levels. They demonstrated that this algo-
rithm was directly correlated with the isodata clustering algorithm
(Brzakovic et al., 1990). It has to be noted, that with this strategy,
spatial information (region information) is taken into account.

Like Fu and Mui (1981), we consider threshold methods as part-
itional clustering methods. Threshold methods have been widely
used for mass detection and/or segmentation. For instance, a
threshold can be applied to obtain an initial rough detection of sus-
picious regions and, in a subsequent step, the result is refined
using, for example topological analysis (Giménez et al., 1999) or
the already explained region growing and snakes algorithms.

Most of the thresholding algorithms are based on the grey-level
value of the actual mammogram. For instance, Abdel-Dayem and
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El-Sakka (2005) found the best threshold to detect masses based
on minimising the global fuzzy entropy of the image. In contrast,
Matsubara et al. (1997, 1998) used different threshold values
depending on the type of tissue of the breast, which was analysed
using histogram analysis. Goto et al. (1998) refined the result of
this work with the aim to detect possible spicules of the mass,
and Kasai et al. (2002) included a pre-processing stage for detect-
ing masses near the skin-line.

Mudigonda et al. (2001) used multilevel thresholding to detect
closed edges. In this approach a concentric group of contours rep-
resents the propagation of density information from the central-
core portion of an object or tissue region in the image into the sur-
rounding tissues. This algorithm can be regarded as a region grow-
ing approach, where in each iteration neighbours with similar
grey-level values are grouped (the works of Huo et al. (1995), as
well as Petrick et al. (1999), described in subsection 2.1, follow a
similar strategy). The main drawback of this approach is the
assumption that masses have (more or less) uniform density com-
pared to the local background. On the other hand, Özekes et al.
(2005) used directional thresholding to estimate the shape of the
mass. The pixels of the mammogram were scanned in eight direc-
tions using various thresholds. Subsequently, a (circular) mass
template was used to categorise the region as being a true mass.
Sameti and Ward (1996) and Sameti et al. (1997) introduced neigh-
bouring information into the thresholding algorithm. They first di-
vided the image into a set of ROIs and, subsequently, a fuzzy
membership was given to each pixel of the ROI. In each iteration
an error value was calculated, updating also each membership va-
lue. In this process they took neighbouring values into account.

In other cases the thresholding is not applied directly to the
mammographic image, but to an enhanced version of the original
image. For example, Ball et al. (2004) threshold a contrast en-
hanced version of the mammogram. Kobatake et al. (1994) and
Kobatake and Murakami (1996) applied an Iris filter designed to
enhance rounded opacities and to be insensitive to thin anatomical
structures. Using adaptive thresholding they detected round
masses. A similar approach has been recently used by Varela
et al. (2007). In the work of Khan et al. (2002), the threshold to seg-
ment the data of an inner disk was computed using the background
grey-level located inside an outer ring. Xie and Ma (2001) and Xie
(2002) automatically located the threshold to segment a probabil-
ity density function coming from wavelet analysis and Bayesian
estimation of the mammogram. A logical filter was used by Rocha
et al. (2000) in order to enhance the edges of the suspicious region.
Subsequently, a thresholding value was found using histogram
information to find the edge of the lesion.

Instead of enhancing the image using filters, a different ap-
proach is to first extract some features from the image and thresh-
old them in a posterior step. For instance, Heath and Bowyer
(2000) developed a new mass detection algorithm which was
based on an Average Fraction Under the Minimum (AFUM) filter,
which was designed to find the degree to which the surrounding
region of a point radially decreases in intensity. The final step
was to threshold the image to identify suspicious regions. Another
example is the work of Gupta and Undrill (1995) and Undrill et al.
(1996) who thresholded the mammograms using Laws masks. Pfi-
sterer and Aghdasi (1999, 2001) showed that this last approach can
be improved by combining it with wavelet decomposition. This
work is similar to that proposed by Laine et al. (1996), where the
best scale to segment the lesions was also found using a similar
wavelet decomposition (Laine et al., 1995). In contrast to using a
wavelet decomposition, Miller and Ramsey (1996) proposed a
non-linear multi-scale analysis by maximum entropy. The aim of
this analysis was to eliminate unwanted confusing structures.

Another common approach is to threshold the result of an im-
age subtraction. Polakowski et al. (1997) found the edges in the im-
age by subtracting two smoothed versions of the original
mammogram, and subsequently thresholded this image. Two
Gaussian filters with different standard deviation were used to
smooth the original mammogram. In recent work, Catarious et al.
(2006) investigated how the parameters of this algorithm affect
the true and false positive rates and the description of the detected
suspicious regions. Catarious et al. (2004) also proposed the use of
an iterative procedure to refine the result of this subtraction. In-
stead of subtracting two blurred images of the mammogram,
Kom et al. (2007) subtracted from the original image a linearly
transformed enhanced image, and Kwok et al. (2002) the recon-
structed image coming from the Daugman–Downing texture
demodulation.
2.4. Model-based methods

As model-based segmentation we define those methods that in-
clude a training stage to learn the specific objects to be detected.
Subsequently, the system has to be able to detect and classify
new images depending on the presence or absence of similar ob-
jects. The training step cover examples with and without the object
present, where in our case, the object is a mass. Thus:

� From mammograms containing a mass, the system learns the
probable location and the variation in shape and size of the
mass.

� From mammograms not containing a mass, the systems can
learn features that represent normality.

Based on both training aspects the system learns what features
to look for when presented with a new image. Table 4 shows pub-
lications based on such a strategy.

One of the most commonly used model-based segmentation
methods is pattern matching. In pattern matching, the training is
usually based on images containing the object to detect. Since
the early proposal of Lai et al. (1989), pattern matching has been
used for mass detection in mammographic images by different
researchers (Ng and Bischof, 1992; Che et al., 1996; Constantinidis
et al., 1999, 2000, 2001) using the normalised cross-correlation dis-
tance as the similarity measure. The main drawback of these ap-
proaches is the difficulty to account for the large variation in the
shapes of masses. A different similarity measure that can be used
to determine if a query ROI contains a true mass is mutual informa-
tion, as used by Tourassi et al. (2003). In contrast, Oliver et al.
(2006) and Freixenet et al. (2008) proposed to use a probabilistic
template matching scheme to detect masses. The shape and defor-
mations of a deformable template were learnt from real mass
examples. Subsequently, a Bayesian scheme was used to adapt
the learnt deformable template to the real contours of the mam-
mogram. On the other hand, Hatanaka et al. (2001) successfully
used a similar approach to detect masses with a partial loss of re-
gion, i.e. those masses located at the border of the image or on the
boundary between the pectoral muscle and the breast.

Chang et al. (1996b,a) established a simple approach for detect-
ing suspicious regions based on five rules. The selected regions
should contain: (1) a global maximum in a Gaussian smoothed im-
age; (2) a local maximum in the original image; (3) a local maxi-
mum in the image coming from the subtraction of two smoothed
images (one using a Gaussian filter and the other using a box fil-
ter); and either (4) a small suspicious region of low contrast; or
(5) a small suspicious region of high contrast. This approach was
later combined with the initial approach of Zheng et al. (1995b)
using logical operations (Zheng et al., 1996): the or operation in-
creased the sensitivity of both algorithms as well as the number
of false positives, while the and operation drastically decreased



Table 4
Model-based mammographic detection and/or segmentation techniques indicating used feature information and the purpose of each work. The penultimate column indicates the
number of images used for validating the approach (r stands for ROI, m for mammogram, p for pair (2 mammograms), and c for case (4 mammograms)) and the parenthesis stand
for the number of images used for training the approaches. The last column indicates the purpose of the described approaches: detection of masses in full mammograms (D), the
segmentation of a mass given a small patch of the mammogram or a given seed point (S), or the detection and segmentation of the mass given the full image (D and S).

Author Year Texture Gradient Grey-level Shape Num testing D/S

Lai et al. (1989) 1989
p p

17 m D
Kegelmeyer (1992) and Kegelmeyer et al. (1994) 1992

p p
85 c D and S

Ng and Bischof (1992) 1992
p p

27 m D
Karssemeijer (1994, 1999) and Karssemeijer and te Brake (1996) 1994

p p
50 m D

Stathaki and Constantinides (1994) 1994
p

S
Tarassenko et al. (1995) 1995

p p p p
16(24) m D and S

Calder et al. (1996) 1996
p

S
Chang et al. (1996b,a) 1996

p
510 m D

Che et al. (1996) 1996
p p

40 m D
Diahi et al. (1996) 1996

p
D

Li et al. (1996b,a, 2001) 1996
p p

200 m D and S
Kalman et al. (1997) 1997

p p
55(13) m D

Jiang et al. (1998) 1998
p p

24 r S
te Brake and Karssemeijer (1998, 1999) 1999

p p
132 m D

Zwiggelaar et al. (1998, 1999a) 1998
p p

56 m D and S
Constantinidis et al. (1999, 2000, 2001) 1999

p p
470(180) m D

Morrison and Linnett (1999) 1999
p

2 m D
Christoyianni et al. (2000) 2000

p p
74(44) m D

Hatanaka et al. (2001) 2001
p p

335 m D
Liu et al. (2001) 2001

p p
38(19) m D

Lo et al. (2002) 2002
p p

200 (124) m D and S
Youssry et al. (2003) 2003

p p
22 m D

Campanini et al. (2004) 2004
p

512 m (1400 r) D
Cheng and Cui (2004) 2004

p
100 m D

Hassanien et al. (2004) 2004
p

4 m D
Öktem and Jouny (2004) and Ali and Hassanien (2006) 2004

p p
60(180) m D and S

Mousa et al. (2005) 2005
p

322 m D
Oliver et al. (2006) and Freixenet et al. (2008) 2006

p p
120 m (912 r) D

Sakellaropoulos et al. (2006) 2006
p

90(166) m D
Székely et al. (2006) 2006

p p
160 (100) m D and S
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the false positive rate, but also the sensitivity was less than using
both algorithms independently.

There is a series of approaches which model the masses using
statistical approaches. For instance, Zwiggelaar et al. (1999a,
1998) detected spiculated lesions as the union of two techniques:
the first one modelled the centre of the mass using a directional
recursive median filter, while the second technique modelled the
surrounding pattern of linear structures applying a multi-scale
directional line detector. The combination of both methods results
in a probability image and the detection is performed by threshold-
ing the resulting probability image. Li et al. (1996b,a, 2001) first
applied an image enhancement algorithm using morphological fil-
tering. Subsequently, they employed a finite generalised Gaussian
mixture (FGGM) distribution to model the histogram. They incor-
porated the EM algorithm to determine the optimal number of im-
age regions and the kernel shape in the FGGM model. The final step
was the use of Bayesian relaxation labelling to perform the selec-
tion of suspected masses. This work was extended (Lo et al.,
2002) in order to extract the boundary of spiculated masses. In
contrast with Tarassenko et al. (1995) used Parzen windows (Duda
et al., 2001) because, as they stated, this required fewer assump-
tions compared to Gaussian mixtures. Calder et al. (1996) com-
pared the performance of Spatial Planar Models and Gibbs Field
models for both micro-calcification and mass segmentation. They
found that the latter approach outperformed the former at the cost
of introducing a priori knowledge information. In similar work,
Morrison and Linnett (1999) compared the performance of para-
metrising both micro-calcifications and masses using a Gaussian
function or a Hyperbolic Secant (sech) function. They found that
the latter approximation outperformed the Gaussian approach,
which suffers from a large number of false positives due to the fact
that noise spikes are more likely to be accepted with this model
than using the sech function.
A common approach in model-based mass segmentation meth-
ods is to extract gradient information from the mammogram and
subsequently use this information for training a classifier. Due to
the training aspect we do not classify such approaches as pure
edge-based methods. One of the early approaches using this strat-
egy was the work of Karssemeijer (1994, 1999) and Karssemeijer
and te Brake (1996). They first detected spicules using second-or-
der Gaussian derivatives operators. The specific orientation of spic-
ules and background pixels were estimated. With this information
they constructed two new features that formed the input for the
classification stage. In more recent work (te Brake and Karssemei-
jer, 1999, 1998), they improved this algorithm using a multi-scale
approach. Another approach using edge information is by Jiang
et al. (1998), which is based on the enhancement of the spicules
using morphological operations and, subsequently, two features
representing the concentration of spicules were used to train a
classifier based on a discrimination function.

In a similar way, not only using gradient but also including tex-
ture features in modelling the suspicious regions, Kegelmeyer
(1992) and Kegelmeyer et al. (1994) trained a binary decision tree,
obtaining as a final output a probability image. In a recent ap-
proach, Székely et al. (2006) also used a decision tree to classify
a sliding window to contain mass or normal tissue. Subsequently,
a Markov Random Field is used to refine the obtained segmenta-
tion. In similar work, Liu et al. (2001) decomposed the image using
wavelets and at each resolution, extracted a set of features, includ-
ing an edge orientation histogram. Subsequently, from coarse to fi-
ner resolutions, each pixel was classified by using a binary decision
tree. As a natural extension of the work of Aylward et al. (1998)
who used Gaussian Mixture Modelling (GMM) (Duda et al.,
2001) to segment the breast according to their tissue, Sakellaropo-
ulos et al. (2006) used wavelet analysis and feature extraction to
classify the pixels of the dense region as mass or normal tissue.
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In contrast with all these approaches, Campanini et al. (2004) pro-
posed not to extract specific features to detect the lesions, but in-
stead, they trained a Support Vector Machine (SVM) using grey-
level ROI information from mass and normal tissue samples.

Finally, there is a large set of approaches based on Neural Net-
work classifiers. These usually formulated the problem of segmen-
tation as a classification of ROI as suspicious or not. The features for
training are intensity or texture related information based on a set
of known ROI containing masses and a set of random samples from
normal tissue. For instance, Stathaki and Constantinides (1994)
trained a neural net classifier using features extracted from a
two-dimensional autoregressive model. Wei et al. (1994) used a
convolution neural network, which is a back-propagation neural
net that directly operates on images, instead of the typical fea-
ture-based back-propagation neural nets, like the one proposed
by Diahi et al. (1996). Kalman et al. (1997) proposed the use of a
linear output sequential recursive auto-associative memory where
hidden units are connected in feedback to the context input–out-
put units in order to predict the next preceding feature. Christoyi-
anni et al. (2000) used a radial-based function neural network to
classify features derived from the histograms of each ROI. Öktem
and Jouny (2004) combine a back-propagation neural network
and a self-organising map trained using fractal analysis and spatial
moments distributions. Hassanien et al. (2004) and Ali and Hassa-
nien (2006) tested a pulse-coupled neural network, which has the
ability to extract edges, image segments, and texture information
Table 5
Mammographic mass detection techniques using more than one image, detailing the us
mammogram, p for pair (2 mammograms), and c for case (4 mammograms)). The parenth

Author Yea

Lau and Bischof (1991) 199
Yin et al. (1991, 1993, 1994) and Giger et al. (1992) 199
Brzakovic et al. (1994) 199
Sallam and Bowyer (1994, 1996) 199
Zheng et al. (1995a) 199
Stamatakis et al. (1996) 199
Vujovic et al. (1996) and Vujovic and Brzakovic (1997) 199
Zouras et al. (1996) 199
Highnam et al. (1998) and Kita et al. (1998, 2001) 199
Karssemeijer and te Brake (1998) 199
Kok-Wiles et al. (1998) 199
Méndez et al. (1998, 2003) 199
Chang et al. (1999), Good et al. (1999) 199
Good et al. (2001) 199
Sanjay-Gopal et al. (1999) and Hadjiiski et al. (2001b,a) 199
Bovis and Singh (2000) 200
Leung and Sickles (2000) 200
Martı́ et al. (2001, 2002) 200
Sun et al. (2001, 2004) 200
Attikiouzel and Chandrasekhar (2002) 200
Paquerault et al. (2002) 200
Wirth et al. (2002) 200
Georgsson (2003) 200
Richard and Cohen (2003) 200
Van Engeland et al. (2003) 200
Zheng et al. (2003a) 200
Christoyianni et al. (2004) 200
Altrichter et al. (2005) 200
Filev et al. (2005) 200
Timp et al. (2005) and Timp and Karssemeijer (2006) 200
Wai and Brady (2005) 200
van Engeland et al. (2006), van Engeland and Karssemeijer (2006, 2007) 200
Wang et al. (2006) 200
Hachama et al. (2006) 200
Martı́ et al. (2006) 200
Zheng et al. (2006) 200
Qian et al. (2007) 200
Pu et al. (2008) 200
Velikova et al. (2009) 200
from images. Cheng and Cui (2004), Youssry et al. (2003), and Mou-
sa et al. (2005) all used fuzzy neural networks.
3. Mass detection using multiple views

The comparison of different mammographic images of the same
person is common practice in breast radiology. Usually, this com-
parison is between

� left and right mammograms,
� two mammographic views (CC and MLO) of the same breast,
� same view mammograms taken at different times.

Table 5 shows the approaches found in the literature arranged
according to the used comparison. Note that we do not classify
the algorithms according to detection or segmentation purposes
because the result of all these algorithms is the detection of suspi-
cious regions, not the perfect segmentation of the boundary of the
lesions.

This practice is justified from a clinical point of view by Kopans
(1998), who makes two important observations when comparing
different mammograms of the same woman:

� though one breast may be larger than the other, internal struc-
tures are quite symmetric over broad areas, and
ed approach and the number of images used for validation (r stands for ROI, m for
esis stand for the number of images used for training the approaches.

r Left–right CC-MLO Temporal Num testing

1
p

114 m
1

p
46 c

4
p

32 p
4

p
1 p

5
p

500 m
6

p
40 p

6
p

29 p
6

p
79 c

8
p

32 p
8

p
132 p

8
p

26 p
8

p
70 p

9
p

571 p
9

p

9
p

74 p
0

p
144 m

0
p

84615 m
1

p
3 p

1
p

20(30) p
2

p

2
p

169 p
2

p

3
p

100 p
3

p
3 p

3
p

150 p
3

p
260 p

4
p

20 p
5

p
188 c

5
p

318 p
5

p
389 p

5
p

6
p

412 c
6

p
3 p

6
p

3p
6

p
64 p

6
p

450 c
7

p
100 p

8
p

200 p
9

p
268 p
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� overlapping tissue structures that form summation shadows
and normal tissue variations on the mammogram highlight
unimportant asymmetries.

In order to distinguish masses and asymmetric breast tissue, cli-
nicians take a range of characteristics of abnormal areas, such as
size, density, and shape into account.

The following subsections provide a more detailed description
of the various approaches to automatic mass detection from multi-
ple mammographic images.
3.1. Comparison of left and right mammograms

The comparison between left and right breasts is based on the
fact that both breasts have a similar internal structure. Fig. 2 shows
mammograms corresponding to the left and right breast of a wo-
man. A tried and tested method is known as bilateral subtraction.
Both images are first aligned and subsequently subtracted. The
alignment of both breasts is the critical component in this process.
There are two main approaches to this:

� The use of anatomical features, like the position of the nipple,
internal regions or assumptions on the compression of the
breasts (Yin et al., 1991, 1994; Méndez et al., 1998, 2003; Bovis
and Singh, 2000; Attikiouzel and Chandrasekhar, 2002; Georgs-
son, 2003; Richard and Cohen, 2003; Christoyianni et al., 2004;
Wang et al., 2006).

� The segmentation of the profile of both breasts (Giger et al.,
1992; Karssemeijer and te Brake, 1998).

The drawback of the latter techniques is that these are not likely
to register the breast interior correctly. The main reason is that
these techniques do not take the distortion of the internal struc-
tures into account. Note that compression conditions are likely to
be different for the left and right mammograms. In the literature
there are studies comparing the performance of bilateral subtrac-
tion with single-image algorithms (Yin et al., 1993; Zheng et al.,
1995a). While the former study suggested that bilateral subtrac-
tion performs better than single-image detection, the conclusion
of the latter contradicts this. Both techniques are non-exclusive
and can be used in parallel to improve the results (Karssemeijer
and te Brake, 1998).

There are alternatives to this alignment and subtraction ap-
proach. Kok-Wiles et al. (1998) represent the bright zones of the
breast as a tree-structure, which forms the basis for the compari-
son process. Stamatakis et al. (1996) developed a Multiple Image
Comparison approach. This method starts with one pair of mammo-
Fig. 2. Right and left mammograms of a woman (selected from the Trueta
database).
grams, subsequently the system computes eight new pairs of
images using a set of grey-level features. Finally each pair is bilat-
erally compared and the resulting images are recombined into a fi-
nal result.
3.2. Comparison of two mammographic views

The comparison of two views of the same breast is also known
as ipsilateral comparison. Fig. 3 shows two different views of the
same breast. The common approach is to firstly detect masses in
both mammograms independently using a single view approach,
and afterwards, map the suspicious regions on the other view by
using a correspondence algorithm. Therefore, a comparison is
made in order to ensure that the suspicious detected regions are
real masses or false positives.

Differences between the approaches can be found in both steps
of the algorithms. For instance, the first step of these algorithms
can be based on each of the reviewed methods in Section 2. On
the other hand, the correspondence algorithm can be used in dif-
ferent ways: (1) to validate that a suspicious region detected in
both views is the same (Paquerault et al., 2002; Pu et al., 2008),
(2) to help an algorithm to detect a mass in the second view once
a possible mass have been detected in the first view (for instance,
by reducing the decision threshold of a probability image) (Zheng
et al., 2006), or (3) to extract joint features of both views for a pos-
terior classification step (Sun et al., 2004; van Engeland et al.,
2006).

The correspondence algorithms rely on the fact that radiologists
use the distance to the nipple to correlate a lesion in both MLO and
CC views (van Engeland et al., 2006; Wei et al., 2009) since it is
generally believed that this distance remains fairly constant.
Hence, once the nipple is (automatically) located a polar coordi-
nate system is centred on its position (if the nipple does not appear
in the image the furthest point to the chest wall can be used in-
stead Zheng et al., 2006). To validate if a mass is the same in both
views the distance from the mass to the nipple is computed and
compared (Paquerault et al., 2002; Pu et al., 2008). In contrast,
other algorithms open a search strip where to look for the possible
masses (Sun et al., 2004; van Engeland et al., 2006; Zheng et al.,
2006).

Two recent approaches are the works of Pu et al. (2008) and
Velikova et al. (2009). The former used the skin-line for fitting an
ellipse based model whose major and minor axis defined the direc-
tions of a Cartesian coordinate system located at the point where
one of the axis intersects with the breast boundary. This way, in-
stead of using a polar coordinate system, this approach allows
the use of a Cartesian coordinate system. On the other hand,
Fig. 3. CC (left) and MLO (right) views of the same breast (selected from the Trueta
database).
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Velikova et al. (2009) proposed a Bayesian network framework that
takes into account not only the lesions region, but also the links be-
tween regions.
3.3. Temporal comparison of mammograms

Finally, a comparison can be performed between mammograms
of the same breast but temporally separated. Radiologists use the
same approach to evaluate how a suspicious region has evolved.
Sanjay-Gopal et al. (1999) first identify regions of interest on the
most recent mammogram. Subsequently, the nipple location is
used to align mammograms and locate the detected region in the
previous mammogram. Vujovic and Brzakovic (1997) proposed
an algorithm for identifying the potential control points (for in-
stance crossing points) and establishing the correspondence be-
tween them. Using a similar methodology, Martı́ et al. (2001)
extracted salient control points from internal linear structures in
order to establish the correspondence. The latter provides a more
robust approach to the extraction of control points using features
such as orientation and width of the structures, instead of just their
positions. Recently, Wai and Brady (2005) proposed to extract the
landmarks at the junctions of curvilinear structures, including
those generated from connective tissue, vessels and ducts. See
Van Engeland et al. (2003) for a quantitative comparison of some
of the mammographic registration methods.
Table 7
Summary of the MIAS mammograms used in this work.

B-I B-II B-III B-IV Total

Circumscribed 9 6 3 2 20
Spiculated 4 7 8 1 20
Ill-Defined 7 4 3 0 14
Normal 56 67 58 26 207

Total 76 84 72 29 261
4. Quantitative comparison of mass detection methods

In Section 2, mass detection and/or segmentation approaches
using one single view have been qualitatively analysed and classi-
fied as region, contour, clustering or model-based methods. How-
ever, based only on this analysis, we cannot estimate the
robustness of the algorithms with respect to different mammo-
graphic cases (different breast tissue, different lesion types and
sizes). Therefore, in order to study how the performance varies
for the different strategies, and with the aim to extract reliable
conclusions, we have quantitatively compared seven different ap-
proaches, which are shown in Table 6. These approaches are se-
lected as being representative of the main state-of-the-art
general purposes detection techniques, but at the same time, tak-
ing into account the fact that they have been successfully applied
to our particular problem, which is the detection (and some of
them segmentation) of masses, and showing good performance.
Moreover, we tried to represent the proportion of algorithms for
each category: one region-based and one contour-based (which
are the least used strategies), two model-based (which is the inter-
mediate used strategy), and three based on clustering (the most
used strategy). The performance of the different approaches has
been analysed using both ROC analysis and FROC curves (Metz,
1996) to evaluate the detection/segmentation performance. A
comparison between all the algorithms is provided to determine
their main advantages and constraints.
Table 6
Compared mass detection methods, detailed according to the used strategy. DoG is referr

Strategy Id Method

Region a1 Region growing
Contour b1 Laplacian
Clustering c1 Thresholding

c2 Iris filter
c3 DoG

Model d1 Pattern matching
d2 Classifier
4.1. Data

The algorithms have been evaluated using two different dat-
abases: a publicly available digitised database of mammograms
(the MIAS database) and a full-field digital mammograms database
(the Trueta database). Subsequent subsections describes both dat-
abases in more detail.

For the mammograms of the MIAS database a pre-processing
step has been performed in order to remove the background and
labels. The breast and pectoral muscle area were segmented from
the background using an adaptive threshold (Raba et al., 2005).
This segmentation results in a minor loss of skin-line pixels in
the breast area, but those pixels are not relevant for mass detec-
tion. Note that this step is not necessary for the mammograms
belonging to the Trueta database since this database contains
full-field digital mammograms and hence, the background is
homogeneous and there do not appear any labels in the images.
Subsequently, a second pre-processing step has been performed
in order to identify the pectoral muscle. Clearly, this approach lim-
its the detection/segmentation of masses to the breast area, but
this was used as some of the implemented algorithms use or rec-
ommend to use such approach (Karssemeijer and te Brake, 1996;
Petrick et al., 1996b). In order to detect the pectoral muscle region,
a seed is automatically located in this area and using an adaptive
region growing algorithm it is grown until the pectoral muscle is
detected. The main advantage of using these two pre-processing
approaches is the ease of implementation and fast performance.
4.1.1. MIAS database
The first mammographic database used is a subset of 261 mam-

mograms extracted from the Mammographic Image Analysis Soci-
ety (MIAS) database (Suckling et al., 1994). This is a publicly
available digitised dataset with the following characteristics: reso-
lution of 50 � 50 lm, grey-scale response linear in the optical den-
sity range 0–3.2 OD, and images quantised to 8 bits. For decreasing
the computational cost, all images were reduced by a factor of 4
using Gaussian downsampling twice. Of this set, 54 mammograms
contained masses, whilst the other 207 represented normal cases
(see Table 7 for a breakdown of the dataset). The 54 abnormal con-
tained all the MIAS images annotated as spiculated, circumscribed
or miscellaneous (ill-defined masses). The following were not in-
cluded: mdb059ls because the abnormality location is not included
in the database and mdb290rs because the abnormality is located
on the boundary of the mammogram. In addition, mdb069ll which
ed to Difference of Gaussians.

Based on D/S

Eltonsy et al. (2007) D and S
Petrick et al. (1996b) D and S
Kom et al. (2007) D and S
Kobatake and Murakami (1996) D
Polakowski et al. (1997) D
Lai et al. (1989) D
Karssemeijer and te Brake (1996) D and S
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was annotated as circumscribed was considered as spiculated
based on the detailed annotations by the expert radiologist. With
the aim to simulate a more realistic scenario, all mammograms la-
belled as normal were included in the dataset. All circumscribed
and spiculated lesions have been manually segmented by a breast
screening radiologist and the annotations are used as ground-truth
data. The ground-truth for the ill-defined masses is located using
the location and the radius provided in the MIAS annotations.
Moreover, all mammograms have been classified according to BIR-
ADS density categories by three expert radiologists with the final
classification found by majority voting.
4.1.2. Trueta database
The second database originated from the Radiologic Depart-

ment of University Hospital Dr. Josep Trueta. The database contains
cases, where each case can be composed of both MLO and CC
views. Each image of the database (acquired using a Siemens
Mammonat Novation) has 70 lm pixels quantised to 12 bits. Two
different image sizes depending on the breast size are included:
2560 � 3328 or 3328 � 4096 pixels. As in the MIAS database, all
mammograms were reduced by a factor of 4 for computational rea-
sons. Each case has its own annotations, including the breast den-
sity classified using BIRADS categories and if a lesion is present, its
boundary (accurately outlined by an expert radiologist).

Table 8 shows the distribution according to the BIRADS breast
density categories. The database contains 89 MLO and 87 CC views
containing masses, and 70 MLO and 74 CC normal mammograms.
4.2. Implemented mass detection methods

As shown in Table 6, each selected method is symbolised using
the first letter of the class and a number to distinguish between
each algorithm. This description will be useful when presenting re-
sults and comparing algorithms. The following subsections provide
a detailed description of the selected algorithms.
4.2.1. a1: Based on a detection of concentric layers
Eltonsy et al. (2007) proposed the detection and segmentation

of masses by locating the presence of concentric layers with pro-
gressively lower average intensity. The algorithm begins using a
region granulation: a grey-level transformation to reduce the large
number of intensity levels. Thus, pixels strongly connected in
terms of both spatial location and grey-level intensity are grouped
together in the same granule level.

The granulation step begins by linearly normalising the inten-
sity between 0 and 1. Following, the pixels are assigned to a gran-
ule level. This is done by sequentially visiting each pixel and
examining its local, 3 � 3, neighbourhood. If all neighbours are
within 98% of the granularity, they are assigned to the same gran-
ule level, otherwise they will be assigned to a different level. After
this granulation step, a morphological opening is performed to re-
duce scattered granule levels.
Table 8
Summary of the Trueta mammograms used in this work.

B-I B-II B-III B-IV Total

MLO
Masses 46 21 20 2 89
Normal 34 11 23 2 70
Total 80 32 43 4 159

CC
Masses 45 20 20 2 87
Normal 36 14 22 2 74
Total 81 34 42 4 161
The detection and segmentation of suspicious regions is based
on the inspection of all the granule levels. This way, for each level,
all the regions with the same or higher level are grouped, and a set
of features, including area, eccentricity, solidity, and dispersion are
computed. This process is repeated for the brightest levels. The fea-
tures are used to limit the number of feasible layers. Afterwards,
the concentric layers are found, and the suspicious regions are
those containing at least three evolving concentric layers. All the
parameters used have been empirically adjusted to our databases.
One of these parameters is related to the minimum distance be-
tween possible masses and this distance can be used to obtain
probability images.

4.2.2. b1: Based on a Laplacian edge detector approach
The b1 algorithm is inspired by Petrick et al. (1996b), Petrick

et al. (1996a), who used an ‘‘optimal” Laplacian–Gaussian edge
detector in order to find closed regions in an enhanced image of
the mammogram. The algorithm starts by pre-processing the im-
age using a Density-Weighted Contrast Enhancement (DWCE) fil-
ter. This filter is based on two filtered images of the original
mammogram I(x,y):

� A density image FD(x,y), which is an smoothed version of the
mammogram, and is found by applying a Gaussian filter.

� A contrast image FC(x,y), which is found by subtracting the ori-
ginal image from a second smoothed version of this image.

The density image is filtered again using a non-linear filter KM

and used to define a multiplication factor which modifies the cor-
responding pixel in the contrast image. This way, it allows the local
density value of each pixel to be weighted by local contrast. This
intermediate image FKC can be analytically described as:

FKCðx; yÞ ¼ KMðFDðx; yÞÞ � FCðx; yÞ ð1Þ

This image is used to define a second multiplication value using an-
other non-linear filter KNL, which is multiplied again by the
weighted contrast of the corresponding pixels:

FEðx; yÞ ¼ KNLðFKCðx; yÞÞ � FKCðx; yÞ ð2Þ

The resulting image FE(x,y) is the output of the DWCE filter. The re-
sult of this filtering process is an image with the potential masses
highlighted.

To select the masses an edge detector is applied. A Laplacian–
Gaussian edge detector was used, which defines edges as the zero
crossing locations of:

r2Gðx; yÞ � FEðx; yÞ ð3Þ

where G(x,y) is a two-dimensional Gaussian smoothing function
with standard deviation r, which is the only parameter for the
detection. The detector is used recursively from low resolution
(large r) to high resolution (small r) using the edge map of the pre-
vious stage as a guide for the current edge detection.

Once the edge detector has been applied a set of regions are
found, some of these are suspicious regions while the remaining
regions represent normal tissue. In order to distinguish both types
of regions, a set of simple morphological features are computed.
The thresholding of these features determines which regions are
retained and this information forms the basis for the ROC and FROC
analysis.

4.2.3. c1: Based on thresholding
This algorithm is inspired on the work of Kom et al. (2007). The

method is based on thresholding an image obtained by subtracting
from the mammogram a linear filtered representation of itself.
Firstly an enhanced image E(x,y) is found by using:



Fig. 4. A tumour-like template for matching with tumours of five pixels in diameter
(Lai et al., 1989). The ones in the centre represents a tumour area having uniform
density, the zeros represents the ‘‘do not care” area to account for some of the shape
variability, and the outer minus ones represent the dark background.
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Eðx; yÞ ¼ a logð1þmIðx; yÞÞ Iðx; yÞ < a
Eðx; yÞ ¼ ðexpðIðx; yÞ=aÞ � 1Þ=b Iðx; yÞ > a

�
ð4Þ

where I(x,y) is the original mammogram, m is its maximum grey-le-
vel, b depends on the values of a and m:b = (1 � exp(m/a))/m, and a
and a are two parameters found experimentally (in the original
work, 10,000 and 0.3, respectively). The idea of this filter is to en-
hance both dark and light areas). Following, the subtracted image
S(x,y) is found by:

Sðx; yÞ ¼ Iðx; yÞ � Eðx; yÞ ð5Þ

Finally, the image S is thresholded by using an adaptive local
threshold to obtain the suspicious regions. Variation in the thresh-
old values results in different number of regions and this forms the
basis for the ROC and FROC analysis.

4.2.4. c2: Based on Iris filter
This approach is based on enhancing rounded opacities by

means of the analysis of a gradient-orientation map (Kobatake
et al., 1994; Kobatake and Murakami, 1996), which is obtained
by using the so-called Iris filter. As shown in the recent work of
Varela et al. (2007) the output of this filter strongly depends on
the area considered to calculate it.

The Iris filter is applied to the gradient image obtained as the
maximisation of the first-order directional derivative (we used
the 3 � 3 Prewitt operators). For each pixel P in the gradient image,
N half lines radiating from it are considered. For every half line,
points within a distance Rmin and Rmax are considered. For each of
these points (Qi) the convergence degree of the gradient vector at
that point is defined as:

Ciðx; yÞ ¼
PQi

Q¼Pmin
f ðQÞ

PminQi

; Q i 2 ½Pmin; Pmax� ð6Þ

where Pmin and Pmax are the first and last points of the line being
considered, and the function f(Q) is defined for each pixel as:

f ðQÞ ¼
cosðhÞ jgj–0
0 jgj ¼ 0

�
ð7Þ

where h is the orientation of the gradient vector at the point with
respect to the half line being considered. The maximum conver-
gence degree of the half line is Cio = max(Ci). Hence, the output of
the Iris filter at pixel P is defined as the average of Cio on the N half
lines:

CðPÞ ¼ 1
N

XN�1

i¼0

Cio ð8Þ

The result of this filter is that rounded opacities, such as masses,
are highlighted, while linear structures are mostly removed. More-
over, the use of the minimum radius allows the algorithm to avoid
enhancing micro-calcifications.

The result of this step is a pseudo-probability image in the range
of [�1,1], where higher values are obtained near the centre of
round convex regions. Hence, thresholding these images at differ-
ent levels are used for the ROC and FROC analysis.

4.2.5. c3: Based on a Difference of Gaussians
The approach of Polakowski et al. (1997) combined threshold-

ing and edge features. The first step consists in highlighting the
possible masses by subtracting two smoothed versions of the ori-
ginal mammogram. Subsequently, this image is thresholded to lo-
cate the masses. Catarious et al. (2006) also investigated how the
parameters of this algorithm modifies the true and false positive
rates and the description of the detected suspicious regions.
The core of this algorithm is the use of the Difference of Gaus-
sians (DoG) filter. It is constructed by subtracting two Gaussians
with different standard deviations:

DoGðrÞ ¼ 1
2pr2

1

exp
�r2

2r2
1

� �
� 1

2pr2
2

exp
�r2

2r2
2

� �
ð9Þ

This filter acts like a bandpass filter, and frequencies inside both
standard deviations are highlighted. Hence, masses of different
sizes can be found by varying these values. After the filtering pro-
cess, a global threshold is applied in order to detect the masses. The
optimisation of this threshold is database dependent. Note that a
posterior false positive reduction step is necessary in order to dis-
card normal tissue. The values in the subsequent ROC and FROC
analysis are obtained by varying this threshold.

4.2.6. d1: Based on a pattern matching approach
Pattern matching starts by defining a template, in our case, a tu-

mour-like template. The definition of the template is based on the
approach of Lai et al. (1989), who defined the tumour by three
characteristics: brightness contrast, uniform density and circular
shape. In our implementation, the template can vary between 3
and 201 pixels in diameter, in increments of 3 pixels. Fig. 4 shows
a 5-pixel radius template. The circular patch of ones in the centre
represents a tumour area having uniform density. The ring of zeros
represents the ‘‘do not care” area to account for some of the shape
variability. Finally, the outer edge of the template is filled with
minus ones to represent the dark background. One of the draw-
backs of this algorithm is its poor performance in detecting spicu-
lated masses (Lai et al., 1989).

The matching probability is calculated using mutual informa-
tion (Tourassi et al., 2003). Given two images A and B, the mutual
probability is expressed as:

MIðA;BÞ ¼
X

a

X
b

PABða;bÞ � log2
PABða;bÞ

PAðaÞPBðbÞ

� �
ð10Þ

where PAB(a,b) is the joint probability of the two images based on
their corresponding pixels values and PA(a) and PB(b) are the mar-
ginal probabilities of the variables a and b which are the image
grey-level values at a pixel level. To obtain a compatible template
we calculated the mean of all pixels in the breast area. Subse-
quently, in the template:

� �1s are replaced with pixels values inferiors to the mean: ran-
domly in the range of 3/4–9/10 of the mean value,

� 0s with the value of the mean, and
� 1s with values superiors to it. The values of the template varies

from the centre to the borders of the template. To be specific, the
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centre value is the grey-level value equal to 95/100 of the cumu-
lative histogram of the full mammogram, while the values at the
border are similar to the mammogram’s mean grey-level value.

The result of this step is a probability image, with high values in
those regions where suspicious structures are found. Hence, thres-
holding these images at different values provides the basis for the
ROC and FROC analysis.

4.2.7. d2: Based on a classifier approach
The final approach uses classification and has been inspired by

the work of Karssemeijer and te Brake (1996) and Karssemeijer
(1999). The d2 algorithm finds possible masses from the detection
of spicules using second-order Gaussian derivatives operators. If a
line-like structure is present at a given site, the method provides an
estimation of the orientation of these structures, whereas in other
cases the image noise will generate a random orientation. With
this information two new features are constructed. The first feature
represents the total number of pixels pointing towards the centre,
while the second one estimates if these directions are circularly
oriented. With these two features and a set of classified mammo-
grams d2 trains a binary decision tree. Subsequently, the decision
tree can be used for mass detection in unseen mammograms.

The result of the decision tree is a likelihood image, where
brighter regions means a higher degree of suspiciousness. Hence,
thresholding these images at different levels the algorithm will ob-
tain the results for the subsequent ROC and FROC analysis.

4.3. Evaluation methodology

The evaluation of CAD algorithms is performed by comparing
the results obtained by the detection/segmentation algorithms
with the expert(s) annotations, which are considered as the gold
Fig. 5. The evaluation methodology depends on the aim of the CAD algorithm. Note tha
when thresholding the mammograms of the database.
standard. Hence, each image is labelled as normal or abnormal
(in our case as containing masses, independently of their diagno-
sis) by both the expert and the automatic algorithm. The manual
annotations can be considered as binary images incorporating a
detailed outline of the mass when present. In contrast, the result
of the automatic algorithms is not a single binary image, but a
probability image containing a certain number of grey-levels. In
this kind of image, each grey-level represents the likelihood degree
of being part of a mass. Hence, brighter pixels are those with high
probabilities to be a mass, while darker pixels are those with high
probabilities to belong to normal tissue.

Depending on the aim of the algorithm (detection/segmenta-
tion/diagnosis) different methodologies are used for the evalua-
tion, as is indicated in Fig. 5. Our evaluation has been done in
terms of ROC and FROC analysis. The starting point is a set of prob-
ability images resulting of applying one of the seven implemented
algorithms to the dataset of mammograms. Thresholding all the
probability images at the same threshold we obtain images with
marked regions (mammograms with masses) and without marked
regions (the normal mammograms). Comparing the resulting bin-
ary images with the set of manual annotations we obtain the mea-
sure commonly identified as ‘‘sensitivity at false positives per
image”. This measure consists of counting the overall number of
correctly identified images with masses relative to all abnormal
images (sensitivity), and counting the number of images detected
as containing masses but actually being normal mammograms rel-
ative to all normal images (false positives per image). If at each
threshold, the pair of sensitivity and false positives rate is plotted
as a point in a graph (with the sensitivity on the y-axis and the
false positives rate on the x-axis) we will obtain a Receiver Operat-
ing Characteristic (ROC) curve. A common measure derived from
this curve is the area under the curve (Az), which is an indication
for the overall performance of the observer. For a perfect classifier
t the result of the algorithm must be normalised for obtaining a proper comparison



Fig. 6. Comparison of (a) a manually annotated image and (b) an automatically
probability image resulting from an algorithm. (c)–(f) the results of segmenting the
images at different thresholds (9,8,7,5).
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the Az value is equal to one. Note that increasing the number and
spread of the threshold values in general results in a more accurate
estimation of Az. In this work we used 100 threshold levels to ob-
tain the results.

However, note that using ROC analysis one algorithm can cor-
rectly classify an image as abnormal despite an incorrect localisa-
tion of the abnormality. In order to take this information into
account, a region based analysis is performed using Free-response
Receiver Operating Characteristic (FROC) curves (Metz, 1996). In
this analysis the Lesion Localisation Fraction (LLF) is obtained as
the number of correctly detected lesions relative to the total num-
ber of lesions and the Non-Lesion Localisation Fraction as the num-
ber of non-correctly detected lesions relative to the total number of
images. The FROC curve is the graphical summary of both mea-
sures (Yoon et al., 2007). Note that the definition of a detected re-
gion is needed. Different approaches coexist in the literature, for
instance, a mass is detected if the centre of gravity of the automatic
annotation is inside the manual annotation (Székely et al., 2006;
Zheng et al., 2003a), if the pixel with the highest measure of suspi-
ciousness (probability) falls inside the manual annotation (Karsse-
meijer and te Brake, 1996; te Brake and Karssemeijer, 1999), or
using an overlap criterion (Lai et al., 1989; Kegelmeyer et al.,
1994; Petrick et al., 2002; Bornefalk, 2005; Freixenet et al., 2008).

For plotting the FROC curve, we look for the maximum sensitiv-
ity of each algorithm, and subdivide the resulting range to give 20
sensitivities and determine the number of false positives at these
20 sensitivities to obtain the points on the curve. In our evaluation
we consider a correctly localised lesion if there is a 50% overlap be-
tween the automatic detection and the manual annotation.
Although this definition seems clear it has some problems due to
the fact that the algorithms return probability images and with
the decrease of threshold values new regions appear at local max-
ima and are merged at local minima (or saddle points). Fig. 6 sche-
matically depicts this aspect. Image (a) represents the result of a
manually segmented mass, with a 1 representing the mass and
the zeros representing the normal tissue. Image (b) represents
the result of an automatic algorithm, where higher values repre-
sent those regions more likely to be a mass. Lets start the FROC
analysis thresholding the image at a value of 9, as it is shown in
(c). In terms of this analysis, there is one false positive in the image.
In (d) the threshold is set to 8. The two marks depict the same false
positive and a new correctly detected lesion, since the area overlap
between the annotated and the automatically generated mark is
100%. We follow the analysis reducing again the threshold, as it
is shown in (e), where the threshold is set to 7. Note that in this
case the area overlap between the correctly detected lesion and
the annotated mark reduces to 20%. According to the 50% definition
this would be considered as a incorrectly detected region and two
false positives would be returned. The extreme case is shown in (f),
where the region containing the abnormal region is merged with a
false positive region and the original 50% rule would return a single
false positive and hence reducing the number of false positive per
image. However, here we have segmented the original probability
images before thresholding and the obtained regions are preserved
in the FROC analysis. The segmentation is based on extracting con-
vex regions (peaks) in the probability images (Zwiggelaar et al.,
1999b), where small regions (less than 10 pixels using a 4-con-
nected-neighbourhood) were not considered. Using a similar ap-
proach (ignoring the 10 pixels threshold) the image in Fig. 6b
would be divided into two regions, each containing a local maxi-
mum (i.e. the 8 and 9 values). Using this approach, the results for
Fig. 6e and f would be a single true positive and false positive.

The results in this paper were obtained using a 10-fold cross-
validation methodology. Each dataset was divided in 10 different
groups, nine of them were merged for training the algorithms
and obtaining the best parameters for such group, while the
remaining group was used to test the algorithms using the ob-
tained parameters. For each fold this resulted in an Az value for
the training and test data. This procedure was repeated until all
groups were used for testing. Finally, the ROC and FROC analysis
were performed merging all the tested images. Note, that using
this methodology, each mammogram appears in the test set only
once, while it appears in the training set nine times (in order to
not bias the results, note that for the Trueta database each training
group must include the full patient case). This procedure was re-
peated three times in order to obtain an indication of the variation
in the results (the resulting small standard deviations indicate that
repeating the experiments three times is sufficient). The presented
average and standard deviation results are based on the combina-
tion of the three times 10-fold cross-validation results (e.g. the
average Az values are based on the 30 Az results from each fold).

4.4. Mass detection results

The initial experiment is related to the capability of the algo-
rithms to distinguish mammograms with and without masses,
i.e. the capability of the algorithms to detect masses. This aspect
of the evaluation mimics the radiologist in identifying the presence
of abnormalities. The ROC and FROC analysis and the cross-valida-
tion procedure as described above are used.

Table 9 shows the mean and standard deviation of the Az values
obtained when training the algorithms for both the MIAS and Tru-
eta databases. In addition, the table shows the results obtained for
the test data for both databases. As expected, the performance on
training data shows better results than found for the test data.
The difference in standard deviation between the MIAS and Trueta
data could indicate a higher variation in the Trueta data.



Table 9
Results obtained by the algorithms using ROC analysis for both sets of mammograms.
The results are given in terms of area under the curve (Az). The last row shows the
mean and standard deviation for all the algorithms.

Train Test

MIAS Trueta MIAS Trueta

a1 0.630 ± 0.064 0.579 ± 0.077 0.614 ± 0.032 0.564 ± 0.061
b1 0.778 ± 0.014 0.729 ± 0.013 0.758 ± 0.005 0.686 ± 0.002
c1 0.710 ± 0.014 0.653 ± 0.013 0.685 ± 0.002 0.649 ± 0.005
c2 0.804 ± 0.015 0.760 ± 0.012 0.787 ± 0.003 0.757 ± 0.011
c3 0.674 ± 0.015 0.593 ± 0.022 0.601 ± 0.028 0.594 ± 0.043
d1 0.690 ± 0.017 0.755 ± 0.019 0.675 ± 0.005 0.715 ± 0.001
d2 0.708 ± 0.028 0.718 ± 0.012 0.673 ± 0.016 0.690 ± 0.004
M 0.713 ± 0.060 0.684 ± 0.076 0.685 ± 0.068 0.665 ± 0.068

Fig. 7. FROC analysis of the algorithms using (a) the MIAS database and (b) the
Trueta database.
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Comparing the performance for both databases, note that for
the training data all algorithms except d1 and d2 tend to decrease
their performance when using the Trueta database. This trend is
mirrored in the test data results. These differences can be a reflec-
tion on how the data has been obtained: digitised versus digital,
the quality of the data, and the size and visibility distribution of
the masses within the data. It should be noted that in the original
publications, all algorithms were evaluated on digitised data (like
the MIAS database).

On the other hand, when comparing the results on the test data
for the same database, note that for MIAS, algorithms b1 and c2 ob-
tained the best performance. Algorithm b1 is based on the use of
the DWCE filter to enhance lesions, while algorithm c2 is based
on the Iris filter. In contrast, for the Trueta database, the perfor-
mance of the algorithms is more similar, although the Iris filter ap-
proach (c2) and pattern matching (algorithm d1) provide the best
results.

The FROC results based on the set of 261 MIAS mammograms
are shown in Fig. 7a. In general, all implemented approaches have
a tendency to over-detect (to find more regions than the real ones)
and hence to produce a large number of false positives at high sen-
sitivity rates. Algorithms b1, c2, d1 and d2 show the best trade-off
between sensitivity and false positives per image. Fig. 7b shows the
FROC analysis based on the Trueta database. Note that again algo-
rithms c2 and d2 show the best performance. However, all algo-
rithms show a decreased performance when compared to the
MIAS database. The performance of these two approaches is linked
to the incorporation of directional distribution information. This
aspect is expected to reduce the number of false positives which
are likely to have a more random distribution than true positive re-
gions. This indicates that spatial information is essential to reduce
false positive regions to more acceptable levels.

Instead of using the full FROC curve, we can also compare the
algorithms by establishing the best trade-off between sensitivity
and false positives, i.e. looking for the best operating point of the
algorithms. Note, however, that this is a subjective point since an
expert can prefer to obtain less false positives (but poorer sensitiv-
ities) and another one can prefer higher sensitivities (at the ex-
pense of increasing the number of false positives). For instance,
using the MIAS database, the operating point for algorithm b1
can be established to a sensitivity equal to 0.790 at 4.064 false pos-
itives per image, or otherwise to a sensitivity 0.910 at 8.129 false
positives per image. The same applies to algorithm c2, which cor-
responding operating point can be established to a sensitivity of
0.806 at 3.806 false positives per image or to 0.895 at 7.295 false
positives per image. For algorithms d1 and d2 the best operating
points can be established to sensitivity 0.754 at 6.044 false posi-
tives per image and sensitivity 0.823 at 6.353 false positive per im-
age, respectively. On the other hand, testing the Trueta database,
the operating points can be the following ones: for algorithm b1
0.704 at 7.585 false positives per image, for algorithm c2 either
0.753 at 2.894 false positives pe image or 0.855 at 6.271 false pos-
itives per image, for algorithm d1 0.728 at 6.007 false positive per
image, and for algorithm d2 0.742 at 7.084 false positive per image.

Bornefalk (2005) and Bornefalk and Bornefalk-Hermansson
(2005) presented a parametric methodology that allows estimation
of the probability with which a particular CAD system performs
better than another on unseen data in a clinical setting. It is based
on modelling the sensitivity of an operating point as a binomial
distribution while the false positives are modelled using a Poison
distribution. Given a specific sensitivity, the methodology pro-
duces the 90% confidence interval for the number of false positives
per image. For instance, using the MIAS database, at a sensitivity of
0.8, the number of false positives markings for the different algo-
rithms is: b1 (3.96,5.42), c2 (3.11,5.17), d1 (5.97,6.58) and d2
(5.92,6.61) (the other algorithms did not achieve a sensitivity of
0.8 within the range of false positives per image that was investi-
gated). These numbers clearly show that algorithms b1 and c2 pro-
duce significantly less false positives than the rest of algorithms.
On the other hand, repeating this analysis for the Trueta database
and the same sensitivity of 0.8 the false positives per image for the
various algorithms are: b1 (8.29,10.77), c2 (3.29,5.49), d1
(6.39,7.59) and d2 (7.56,8.47). This indicates that using this digital
database, algorithm c2 significantly outperforms the other
algorithms.

A qualitative comparison between these and the original results
indicate the following. All algorithms showed a marked decrease
when compared to the results presented in their original work.



Table 11
Influence of the lesion shape for the detection algorithms. The results show the
sensitivity for mass detection detailing the behaviour according to their shape. The
total number of masses of each class is: Circular: 20, Spiculated: 20, Ill-defined: 14.
The last row shows the mean and standard deviation for all the algorithms.

Circ. Spic. Misc.

a1 0.689 ± 0.017 0.625 ± 0.009 0.569 ± 0.007
b1 0.865 ± 0.002 0.762 ± 0.002 0.654 ± 0.002
c1 0.821 ± 0.002 0.632 ± 0.009 0.613 ± 0.001
c2 0.768 ± 0.007 0.809 ± 0.005 0.779 ± 0.008
c3 0.665 ± 0.009 0.636 ± 0.013 0.548 ± 0.015
d1 0.749 ± 0.001 0.692 ± 0.001 0.589 ± 0.001
d2 0.720 ± 0.008 0.648 ± 0.007 0.579 ± 0.007

Mean 0.754 ± 0.071 0.686 ± 0.072 0.619 ± 0.078
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Briefly, Eltonsy et al. (2007) (a1) indicated 92% sensitivity at 5.4
false positive per image testing 155 mammograms with masses
and 82 without masses and using 164 training mammograms. Pet-
rick et al. (1996b) (b1) detected 82 of 84 mammograms with
masses, but obtained more than 10 false positives per image (this
number was subsequently decreased by using a false positive
reduction step). Kom et al. (2007) (c1) obtained Az = 0.95 using
61 mammograms, 48 of them containing masses. Varela et al.
(2007) (c2) obtained Az = 0.90 at 3.4 false positive per image (again
without the false positive reduction step) using 60 training mam-
mograms and testing 130 mammograms with masses and 264
being normal ones. Polakowski et al. (1997) (c3) obtained 92% sen-
sitivity at 8.38 false positives per image using 36 mammograms for
the training and 236 for the testing. Lai et al. (1989) (d1) used 17
images containing abnormal regions (no normal mammograms
were included in the study) and indicated a performance of 100%
sensitivity at 1.7 false positives per image. Karssemeijer and te
Brake (1996) (d2) used a combination of 9 stellated lesions, 10
architectural distortions and 31 normals mammograms to reach
a sensitivity of 80% at about 1.0 false positive per image.

Comparing the reported performance with the obtained results
it is clear that algorithms a1, c1, and c3 drastically decrease their
sensitivity, algorithms c2, d1, and d2 maintain their sensitivity
but increase the number of false positives, while the performance
of algorithm b1 is similar to the reported one. The poor perfor-
mance of the former algorithms can be due to different factors,
such the use of different datasets or the different normal to abnor-
mal image ratio. For instance, note that algorithms a1 and c1 were
evaluated with more mammograms containing masses than with-
out containing masses. On the other hand, the increase in the false
positive numbers in algorithms c2, d1, and d2 was expected, since
all these approaches used a posterior algorithm with the aim to re-
duce this number. Finally, note also that the number of false posi-
tive when using the Trueta database is larger than using the MIAS
one. This is due to the fact that the digital technology allows a
more detailed contrast of all the breast, and there appear struc-
tures highly contrasted that do not appear in digitised mammo-
grams, which are associated with suspicious regions by the
algorithms. Note, again, than these structures can be effectively
eliminated using a false positive reduction strategy.

4.4.1. Breast tissue influence
The accuracy of the algorithms depending on breast tissue clas-

sification is summarised in Table 10 (the analysis is based on the
test data). This table shows the mean Az value for each algorithm
detailed by each density. Hence, only mammograms corresponding
to the same BIRADS category are used to obtain the values in the
columns. The last row shows the mean and standard deviation
for Az for all the algorithms. In general, masses in low density
breasts are better detected than masses in high density breasts,
although each algorithm performs differently with regard to this.
Table 10
Influence of the breast density for the detection algorithms. The results show the area und
classified according to the BIRADS standard. The last row shows the mean and standard d

MIAS

B-I B-II B-III B-IV

a1 0.671 ± 0.015 0.610 ± 0.017 0.590 ± 0.013 0.548 ± 0.010
b1 0.722 ± 0.005 0.743 ± 0.001 0.782 ± 0.001 0.695 ± 0.001
c1 0.658 ± 0.012 0.694 ± 0.001 0.667 ± 0.001 0.697 ± 0.007
c2 0.819 ± 0.013 0.815 ± 0.012 0.780 ± 0.014 0.680 ± 0.013
c3 0.613 ± 0.013 0.543 ± 0.054 0.611 ± 0.014 0.565 ± 0.011
d1 0.652 ± 0.006 0.653 ± 0.001 0.675 ± 0.001 0.823 ± 0.001
d2 0.646 ± 0.011 0.714 ± 0.008 0.639 ± 0.011 0.733 ± 0.009

Mean 0.683 ± 0.068 0.682 ± 0.089 0.678 ± 0.076 0.677 ± 0.095
For instance, looking at the MIAS results, algorithms a1, c2, and
c3 have superior performance on fatty breasts (BIRADS I) compared
to the other density classes. In contrast, algorithms c1 and b1 ob-
tained the best accuracy for mammograms belonging to BIRADS
II and BIRADS III, respectively. Algorithms d1 and d2 performs bet-
ter for the most dense mammograms (BIRADS IV). The Trueta
based results show similar trends.

The reason for these differences in behaviour can be explained
by different factors. For example, masses in fatty breasts usually
have a more delineated boundary than in denser breasts, and also
one can see a set of circumscribed layers around the mass that are
exploited in the granularity approach (a1) and the Iris filter (c2).
Moreover, as there are clear differences between the grey-level val-
ues of the mass and the rest of the breast, the Difference of Gaus-
sians approach (c3) works well. Algorithms b1 and c1 have a
filtering pre-processing step. This kind of approach seems benefi-
cial for mammograms belonging to intermediate BIRADS (II and
III) classes, where masses are highlighted with respect to the nor-
mal tissue. Finally, algorithms d1 and d2 performs better for the
dense mammograms. Algorithm d2 use contour information as a
basis for the detection process and as such has a better perfor-
mance when increased intensity changes are present. It should
be noted that the results for the BIRADS IV class are based on a lim-
ited number of samples (see Tables 7 and 8).

4.4.2. Lesion shape influence
The lesion shape has a strong influence on the performance of

the detection algorithms. Table 11 shows the sensitivity of the dif-
ferent algorithms detailed by the lesion shapes using the MIAS
database. According to the annotations of this database, the lesions
can be classified as Circumscribed (round and oval shapes), Spicu-
lated (a mass with spicules), and Ill-defined (masses with inaccu-
rate boundaries). There are, respectively, 20, 20, and 14
mammograms of each class (see Table 7).

As a global trend, algorithms show more accurate detection on
circumscribed and spiculated masses than on ill-defined masses
er the curve (Az) for each algorithm detailing the behaviour for the density categories
eviation for all the algorithms.

Trueta

B-I B-II B-III B-IV

0.652 ± 0.010 0.561 ± 0.012 0.560 ± 0.008 0.565 ± 0.007
0.674 ± 0.002 0.651 ± 0.001 0.684 ± 0.001 0.689 ± 0.003
0.642 ± 0.005 0.626 ± 0.002 0.681 ± 0.011 0.677 ± 0.016
0.765 ± 0.006 0.742 ± 0.016 0.712 ± 0.005 0.681 ± 0.008
0.641 ± 0.007 0.634 ± 0.014 0.556 ± 0.017 0.560 ± 0.017
0.707 ± 0.002 0.716 ± 0.003 0.721 ± 0.002 0.806 ± 0.001
0.627 ± 0.012 0.599 ± 0.013 0.602 ± 0.012 0.675 ± 0.006

0.673 ± 0.049 0.647 ± 0.063 0.645 ± 0.071 0.665 ± 0.084



Table 12
Influence of the lesion size for the detection algorithms using the Trueta database. The results show the sensitivity for mass detection detailing the behaviour according to their
size. The number of masses of each class is: Ultra-Tiny (<1.0 cm2): 72, Tiny ð1:0—2:0 cm2Þ: 36, Small ð2:0—3:0 cm2Þ: 12, Medium ð3:0—4:0 cm2Þ: 13, Large ð4:0—7:5 cm2Þ: 26,
Extra-Large (>7.5 cm2): 16. Last row shows the mean and standard deviation for all the algorithms.

ut t s m l xl

a1 0.572 ± 0.009 0.527 ± 0.008 0.582 ± 0.005 0.572 ± 0.009 0.562 ± 0.009 0.612 ± 0.004
b1 0.709 ± 0.003 0.687 ± 0.002 0.685 ± 0.002 0.720 ± 0.002 0.669 ± 0.002 0.654 ± 0.005
c1 0.626 ± 0.001 0.615 ± 0.005 0.626 ± 0.001 0.624 ± 0.002 0.673 ± 0.000 0.719 ± 0.002
c2 0.777 ± 0.003 0.782 ± 0.003 0.809 ± 0.004 0.788 ± 0.006 0.770 ± 0.004 0.764 ± 0.006
c3 0.610 ± 0.006 0.621 ± 0.009 0.638 ± 0.004 0.626 ± 0.004 0.615 ± 0.004 0.623 ± 0.005
d1 0.792 ± 0.003 0.715 ± 0.002 0.710 ± 0.002 0.742 ± 0.002 0.602 ± 0.004 0.581 ± 0.009
d2 0.782 ± 0.008 0.706 ± 0.005 0.674 ± 0.009 0.668 ± 0.008 0.608 ± 0.007 0.607 ± 0.002

Mean 0.695 ± 0.092 0.664 ± 0.084 0.675 ± 0.073 0.677 ± 0.076 0.643 ± 0.068 0.651 ± 0.067
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(see last row of the table, which shows the mean of the algo-
rithms). This is due to the fact that ill-defined masses have irregu-
lar and poorly defined borders, which tend to blend into the
background. However, this is not the case for algorithm c2, which
shows high Az values for all types of masses. The algorithms b1,
d1, and d2 all perform well on the detection of circumscribed and
spiculated masses.
4.4.3. Lesion size influence
The influence of lesion size on detection accuracy is summa-

rised in Table 12. This table shows the sensitivity of the algorithms
detailed by the lesion size, using the Trueta database (a similar
behaviour is found using the MIAS database). According to the
annotations and classifying the masses in the following sizes: Ul-
tra-Tiny (<1.0 cm2), Tiny (1.0–2.0 cm2), Small (2.0–3.0 cm2), Med-
ium (3.0–4.0 cm2), Large (4.0–7.5 cm2), Extra-Large (>7.5 cm2),
there were 72, 36, 12, 13, 26, and 16 masses in each interval,
respectively.

Observe that in the table there is not a specific size where all the
algorithms do well nor a size where all the algorithms perform
poorly, but algorithms vary their performance with lesion size.
However, both algorithms b1 and c2 perform well regardless of
the lesion size. Algorithms d1 and d2 perform better on the smaller
lesions, while algorithm c1 performs better on larger lesions. This
limited performance can be related to the lack of gradient informa-
tion associated with larger masses or to the variation in the train-
ing and test samples.
5. Discussions

We have presented and reviewed different approaches to the
automatic and semi-automatic detection and segmentation of
mammographic masses. Specific emphasis has been placed on
the different strategies. A classification of both detection and seg-
mentation techniques has been proposed, describing several algo-
rithms and pointing out their specific features. Further, we have
evaluated seven of the most frequently used strategies for mass
detection using a single view. These methods have been fully eval-
uated using ROC and FROC analysis and tested using a commonly
used digitised database and a new full-field digital database. The
annotations, which were used as the gold standard, were provided
by three expert mammographic radiologists.

It should be made clear that none of the investigated ap-
proaches provide the overall best detection performance. The anal-
ysis of the results using ROC analysis shows that the best
performance, with Az = 0.762 and Az = 0.780, is obtained testing
the MIAS database when using the Laplacian approach applied over
an enhanced version of the mammogram or the thresholding ap-
proach after applying the Iris filter, respectively. In contrast, the
best performances when testing the full-field digital mammogram
are obtained again by the Iris filter approach, Az = 0.759, and by the
pattern matching approach, with Az = 0.715. The obtained results
show a dependence on the breast density. Testing the MIAS data-
base, abnormal mammograms belonging to BIRADS I tend to show
improved detection over abnormal mammograms belonging to
other BIRADS category. This is related to the increase in parenchy-
mal tissue, which is mistaken for abnormal regions. In contrast,
when testing the Trueta database, this global trend is less clear,
and the dependency varies for each algorithm. The lesion shape
also affects the final results of the algorithms. As is shown in Ta-
ble 11 the algorithms tend to find well-defined circumscribed
masses easier to detect, followed by spiculated masses and finally
ill-defined masses. Finally, we note that the results of the algo-
rithms also depend on the lesion size, although no clear trend is
evident.

The combination of algorithms is a powerful manner to obtain
more robust systems for object detection. In this sense, we com-
bined the results of the four algorithms with best performance
using addition and multiplication of the corresponding probability
images (applied to the MIAS database). Although there are more
complex options to combine them, using these simple techniques
indicated the possibilities for further development. The result when
using addition was Az = 0.802 ± 0.003 and when using multiplica-
tion was Az = 0.800 ± 0.004. Note that for both combinations, the re-
sults outperform the detection performances when testing the
algorithms individually (see Table 9). This shows that, effectively,
the combination of algorithms can be a way to obtain improved
sensitivities, and that this topic might be explored as future work.

On the other hand, the analysis of the FROC curves shows that
algorithms based on the Laplacian, the Iris filter, the pattern
matching, and the gradient analysis provide the best results,
obtaining a sensitivity better than 0.8, although at this sensitivity
the number for false positive per image is more than 5. However,
this number could be decreased by using false positive reduction
algorithms. These algorithms are based on the analysis of the sus-
picious ROIs in order to classify them as real masses or normal tis-
sue. Usually, these algorithms are based on extracting a number of
different features (based on grey-level or texture) and use them to
distinguish between both types of ROIs (Sahiner et al., 1996; Qian
et al., 2001; Lladó et al., 2009). Note, for instance, that in Varela
et al. (2007), after the thresholding step, a false positive reduction
algorithm based on extracting grey-level and morphologic features
and training a neural net is proposed. A different approach to re-
duce the number of false positives is the use of information coming
from another mammographic view (van Engeland and Karssemei-
jer, 2007; Wu et al., 2007).

We can compare the results obtained in this review with the re-
sults reported in the literature for commercial CADs. We should
distinguish between evaluation per case and per image (as we do
here). Sensitivities for the first group ranges from 0.70 to 0.90 at
false positive rates between 0.35 and 2.6 FPs/case (Wu et al.,
2007; Ellis et al., 2007; Yang et al., 2007; Wei et al., 2007), while
for the second group the sensitivity is reduced to 0.43–0.80 at false
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positive rates between 0.2 and 1.4 FPs/image (Ellis et al., 2007; Kim
et al., 2008). These values tend to improve when micro-calcifica-
tion detection is also included, due to the fact that the performance
for commercial mass detection algorithms is lower than that of mi-
cro-calcification detection algorithms (Warren et al., 2000). Com-
paring these results with those obtained here we note that the
sensitivity obtained is in the same range than the commercial ones.
In contrast, the number of false positives at these sensitivities is
larger. However, the use of the above mentioned false positive
reduction algorithms should be useful for reducing this number.
Note that commercial CAD systems include both false positive
reduction step and potentially other processing stages to refine
the initial detection results.

The superior performance of algorithms b1 and c2 when testing
the MIAS database could be due to the fact that both algorithms
apply pre-processing enhancement, showing that this kind of
pre-processing algorithms could be beneficial. Note however, that
changing the database the performance of both algorithms de-
creased (more drastically the Iris based approach). This should
indicate that enhancing techniques are database dependent, which
is an undesirable behaviour. A possible way to eliminate such
dependency should be an initial analysis of the mammograms of
the database, in order to automatically tune the possible enhance-
ment parameters. Note that this is what model-based algorithms
implicitly do. Moreover, digital technology allows us to easily ob-
tain additional mammograms. However, the fact that ground-truth
has to be manually provided by expert radiologists limits the use of
such model-based algorithms. Although this is becoming less of a
problem as more manually segmented mammograms can be found
in the public domain, it should be noted that the quality of anno-
tations is variable.

As shown in Section 4.4 lesion shape, size and tissue type
strongly influence the performance of these algorithms. Few algo-
rithms make use of breast tissue information which can be auto-
matically known a priori before applying the detection algorithm
(Byng et al., 1996; Karssemeijer, 1998; Zhou et al., 2001; Oliver
et al., 2008). For instance, Matsubara et al. (1997) first classify a
mammogram according to its density, and subsequently removing
the dense cases in their mass detection approach. Eltonsy et al.
(2007) adjust the training and testing databases according to the
number of mammograms of each density class. In a recent proposal
based on a pattern matching approach, Freixenet et al. (2008) train
different templates for each density class. In the matching step, the
mammogram is firstly classified in a density class, and only the
corresponding templates are used for detecting masses. They re-
port a similar performance for each class.

Our validation of the algorithms has been performed using both
a digitised and a full-field digital database. Note however, that ac-
tual trends in mammography show that digital technology outper-
forms traditional analog imaging, in terms of quantum efficiency
and higher resolution (Smith, 2003), acquisition time (Berns
et al., 2006), low patient radiation (Obenauer et al., 2003), easier
storage and transmission (the DICOM protocol, National Electrical
Manufacturers Association, 2006) and also for the improved inte-
gration with computerised tools. We have used a (relatively) small
set of digital mammograms. This is due to the fact that, up to date,
there is not a publicly available full-field mammographic database,
yet. Note that when one of these exists (and become an evaluation
standard in mammography), future evaluation should shift from
digitised to digital images.
6. Conclusions and future trends

Mass detection and segmentation techniques, in general, are
still in need of improvement. In this sense, mammographic mass
detection/segmentation algorithms using a single image are ex-
pected to improve in different ways. Actual trends in unsupervised
object recognition are based on probabilistic latent semantic anal-
ysis and visual vocabularies (Sivic et al., 2005; Bosch et al., 2008).
Although these approaches are outperforming the traditional
supervised schemes for specific applications, we believe that
supervised approaches are likely to achieve a better performance
for mass detection/segmentation as such approaches are capable
of including the large variation in the size and morphology of these
abnormalities. Potentially successful detection/segmentation
methods should combine both bottom-up information of the query
image and top-down constraining information of the object to be
detected (Kumar et al., 2005). Thus, a statistical model combining
a priori information of masses, including grey-level, texture, and
also shape information has to be combined with a detection/
matching procedure including actual information of the query im-
age (like, for instance, the breast tissue). In addition, boosting pro-
cedures (Freund and Schapire, 1997; Viola and Jones, 2001;
Torralba et al., 2004) are expected to provide improved perfor-
mance for methods including classifiers.

Finally, the integration of detection results from ipsilateral,
bilateral and temporal mammograms is expected to bring
improvements. The main idea in bilateral and temporal compari-
sons is to detect differences of tissue between the different views.
Note that this information can be introduced in the algorithm a
posterior, i.e. using it as a false positive reduction method, or also
as a priori information. For example, it can be used as an enhance-
ment strategy in order to highlight those regions which are differ-
ent in both views and to remove similar regions. Moreover, in
probabilistic mass detection algorithms, this information could
be introduced as a penalising term in those regions where differ-
ences have been found. On the other hand, information coming
from ipsilateral comparison seems more useful as a posterior infor-
mation, i.e. to test if a suspicious region in one view has a corre-
sponding match in the other view.

Although current results obtained by both commercial and re-
search CAD systems make them a realistic tool in early mass detec-
tion, as indicated above there are still research questions related to
enhancement, detection, segmentation, false positive reduction
algorithms, and multiview integration which makes automatic
mass detection and segmentation in mammography an active area
within computer vision.
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